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ABSTRACT  
The selection of input models in neural networks significantly influences predictive accuracy in 

time series forecasting. This study evaluates different input models for neural networks in rainfall 

prediction using data from the Wonorejo Reservoir, Surabaya. The neural network inputs are 

determined based on significant lags identified through the Partial Autocorrelation Function 

(PACF) and ARIMA models. Simulation results indicate that the best Feed Forward Neural 

Network (FFNN) model utilizes PACF-derived input lags and is trained using the Rprop+ 

algorithm with a logistic activation function. Meanwhile, the optimal Deep Learning Neural 

Network (DLNN) model employs the Rprop- algorithm with a logistic activation function. The 

best-performing model for rainfall forecasting, based on the lowest Root Mean Squared Error of 

Prediction (RMSEP), is the FFNN model with an (8,4,1) architecture. To further refine the model, 

we applied a stepwise selection process to eliminate non-significant lag inputs. However, results 

show that this optimization had no substantial impact, as RMSEP increased after the stepwise 

procedure. 
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PRELIMINARY 

Forecasting theory increasingly focuses on neural networks (NN), leading to 

practical applications in time series prediction and explanatory forecasting (Makridakis et 

al., 2020; Tran et al., 2021). Notwithstanding their theoretical capabilities, neural networks 

have yet to demonstrate their efficacy in predicting compared to established statistical 

methods, such as ARIMA or Exponential Smoothing (Ge et al., 2022; Permata et al., 

2024). NN provides a range of flexibility in the modeling process, including selecting 

activation functions, suitable network topologies for input, hidden, and output nodes, and 

learning methodologies (Jeremy & Suhartono, 2021). Their legitimate and reliable 

application is often perceived as an art and a science (Putri et al., 2021; Wanto et al., 

2021).  
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Prior studies demonstrate that the economic identification of input variables and 

lags for forecasting an unknown data-generating process, in the absence of domain 

knowledge, presents a critical challenge in model definition (Wang et al., 2021; Apaydin et 

al., 2020). Box and Jenkins' study has opened the path for further research on the subject, 

particularly in determining the most relevant input variables in time series data for Neural 

Network model specifications (Jeremy & Suhartono, 2021; Pontoh et al., 2022). This task 

becomes increasingly crucial as complex time series components, such as deterministic or 

stochastic trends and seasonality, interact in a linear or nonlinear model with pulses, level 

shifts, structural breaks, and various noise distributions (Munandar et al., 2023; Suhartono 

et al., 2019). While numerous statistical methods have been established to aid in 

identifying linear dependencies, their application in nonlinear prediction has yet to be 

thoroughly examined. In a separate study, your work on the comparison of single and 

multiple hidden-layer networks (Narvekar & Fargose, 2015; Tran et al., 2021; Putri et al., 

2021) has opened up new avenues for research and is integral to our understanding of why 

single hidden-layer networks converge to linear target functions faster than multiple 

hidden-layer networks (Author et al., 2010; Makridakis et al., 2017). To achieve the best 

prediction outcomes, the correct model selection requires information criteria; in this case, 

we utilize Root Mean Squared Error Prediction (RMSEP). 

Advancements in computational analytics have facilitated real-time solutions for 

practical forecasting challenges. However, the training process for NN models can be 

computationally expensive. To enhance efficiency, effective data preprocessing techniques 

are crucial. Normalization, in particular, plays a vital role in improving predictive 

reliability by ensuring consistent data scaling before training (Rahman et al., 2015). This 

study examines how different normalization techniques contribute to improved forecasting 

accuracy, considering multiple factors influencing data transformation. This study 

illustrates how normalization methods enhance predictive accuracy. Multiple factors for 

data normalization are also taken into account. 

This paper focuses on Computational Intelligence techniques in rainfall forecasting, 

specifically using Neural Networks and time series approaches to predict rainfall 

occurrence in a case study of Wonorejo, Surabaya (Mislan & Dani, 2024). The dataset is 

selected for its distinct seasonal patterns, encompassing both dry and rainy periods 

(Andriyana et al., 2024). Traditional statistical approaches alone may be insufficient in 

capturing the nonlinear dependencies present in rainfall data. Thus, this research aims to 
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identify the most suitable NN input model by integrating statistical techniques, such as 

significant PACF lags and ARIMA modeling, to construct meaningful input variables. 

This study is limited to rainfall forecasting at Wonorejo Reservoir, focusing solely 

on historical rainfall data from this specific location. The NN model developed is trained 

and validated using data from this region, and thus, its applicability to other geographic 

areas with different climatic conditions is not addressed. The research does not explore 

external environmental factors such as wind patterns, temperature fluctuations, or 

topographical influences, which may also impact rainfall predictions. Additionally, while 

this study compares NN-based forecasting with statistical methods like ARIMA, the 

evaluation is constrained to performance metrics such as RMSEP, without incorporating 

alternative validation techniques like probabilistic forecasting or uncertainty quantification. 

Further research is needed to assess the generalizability of the proposed approach to other 

locations with varying meteorological patterns. 

 

METHODS 

1. Autoregressive Integrated Moving Average (ARIMA p,d,q) 

ARIMA is frequently referred to as the Box-Jenkins time series approach (A. T. R. 

Dani et al., 2023). ARIMA is highly accurate for both short and long-term forecasting. The 

ARIMA model combines the autoregressive (AR) and moving average (MA) models. 

(Hutagalung & Sari, 2024; Zen et al., 2023). According to Box and Jenkins, the ARIMA 

model (p,d,q) in Eq. 1. 

0( )(1 ) ( ) .d
p t q tB B Y B a  − = +  (1) 

 

2. Feed Forward Neural Network (FFNN) 

The Feed Forward Neural Network (FFNN) is a prevalent nonlinear model 

extensively utilized for time series forecasting. FFNN has an input, hidden, and output 

layer (Tran et al., 2021). Each layer comprises components known as neurons. Each 

neuron receives information exclusively from the neurons in the preceding layer 

(Suhartono et al., 2019). The FFNN model for univariate time series data with p inputs, q 

hidden neurons, and a single output, represented as FFNN (p, q), can be articulated as 

follows. 
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Where: 
h
jiw    : the weights that connect input layer to hidden layer,  

o
jw    : the weights that connect hidden layer to output layer.  

(.)f    : activation function,  
ob  and h

jb  : the biases 

( )i tX    : the input values 

 ( )
ˆ

tY    : the predicted output values.  

In this study, we compared two algorithm namely Rprop- and Rprop+ and use two 

activations namely logistics and tanh (Wang et al., 2021). Which is given logistics 

activation function follows. 

1
( )

1 x
f x

e−
=

+  
(3) 

Tangent hyperbolic (tanh) function as the activation function, which is given as follows. 
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3. Deep Learning Neural Network (DLNN) 

Deep Learning Neural Networks (DLNN) are Feed Forward Neural Networks 

(FFNN) that include several hidden layers. (Makridakis et al., 2018). In the time series 

model, the DLNN model with two hidden layer is given as follows. 

2 1 1 2
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(5) 

The architectures of FFNN and DLNN are shown in Fig. 1. 

 

 

 

 

 

Figure 1. Visualization the architecture of FFNN (left) and DLNN (right) 

 

4. Evaluation Model using Root Mean Square Error Prediction (RMSEP) 

To evaluate the forecasting performance of the Feedforward Neural Network 

(FFNN) models, we employed the Root Mean Square Error of Prediction (RMSEP) as the 

primary evaluation metric. RMSEP is a widely used measure to assess the accuracy of 

predictive models, especially in regression and time series forecasting contexts. It is 
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defined as the square root of the mean of the squared differences between the actual 

observed values and the predicted values: 

2

1

1
ˆ( )

n

i i

i

RMSEP y y
n

=

= −  (6) 

where iy  denotes the actual observed value, ˆiy  is the predicted value, and nnn is the total 

number of test data points. The RMSEP metric is particularly useful because it penalizes 

larger errors more heavily due to the squaring operation, thus providing a sensitive 

measure of model accuracy. Lower RMSEP values indicate better model performance. 

5. Input Selection 

Stepwise selection expands the forward selection technique by allowing the 

removal of input variables at any later iteration. This method is commonly employed to 

create linear regression models, and stepwise regression is a good illustration. This 

wrapper method repeatedly builds linear models by estimating their coefficients and 

adding new input variables. The input variables are kept after analyzing the newly formed 

model's coefficients. After k+1 input variables are judged to be no better than the previous 

k, the selection procedure is repeated until the model meets optimality criteria, such as the 

AIC. Figure 2 shows the neural network with the considerable lag added by the preceding 

phases after the input models impacted by the stepwise procedure were determined. 

 

Figure 2. Diagram of Stepwise 

 

6. Input Variable Selection for Neural Network 

Our research here takes advantage of recently discovered rainfall data from 

Wonorejo. The dataset covers 1998–2018, with monthly rainfall data included. We create 

two sets of data: one which is used for training and the other which is used for testing. The 

training set contains data from January 1998 to December 2016, while the remaining data 

is used for testing.  

The correct amount of hidden units, or the complexity of functional form, and the 

essential input variables must be selected before a network design can be specified. In this 

study, we used one hidden layer and tried 1 to 10 neuron units with ten replications in 

  Lag input model 
   Stepwise 

   NN 
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FFNN models, compared two algorithms, namely Rprop- and Rprop+1 and used two 

activations, namely logistics and tanh. Previous research in neural network modeling 

asserts that determining the pertinent time series delays by means of seasonal 12 

differencing requires just an examination of the AR terms derived by PACF-analysis. 

This flowchart illustrates the modeling and evaluation process in time series 

analysis using ARIMA and neural networks. The process begins with data transformation 

and progresses through model training and evaluation. The process starts with data 

transformation to ensure optimal data quality before analysis. Next, the Partial 

Autocorrelation Function (PACF) is used to identify significant lag dependencies. Based 

on the PACF results, significant lag inputs are generated and utilized in the ARIMA model 

as well as for input selection in neural network models. Two types of neural network 

models are employed: Feedforward Neural Network (FFNN) and Deep Learning Neural 

Network (DLNN). After training these models, the results are compared and evaluated to 

determine the best approach for time series forecasting. 

 

Figure 3. Flowchart 

 

RESULT AND DISCUSSION 

1. Exploratory Data 

The average rainfall in the Wonorejo Surabaya during the 1998-2006 period was 

213.52 mm. The time series plot shows that rainfall is seasonal in a year and has a 

 
1 Rprop- (Resilient Propagation Minus) and Rprop+ (Resilient Propagation Plus) are two variations of the 
Resilient Backpropagation (Rprop) optimization algorithm used for training neural networks (Mosca and 
Magoulas 2015). 
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tendency to increase from October to March. Time series plot of Wonorejo rainfall are 

given Fig. 4. 
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Figure 5 shows that in January, February, March, April, November and December 

the average value of rainfall is quite high. Meanwhile, in July, August and September have 

average rainfall was low, which indicates that there is a dry season and the season from the 

rainy season to the dry season or vice versa in the month. In 2016 there were differences in 

rainfall patterns in August and September so that it showed a higher rainfall pattern than 

other patterns. 
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Figure 5. Line plots of Wonorejo rainfall 

Figure 4. Time Series plot of Wonorejo rainfall 
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ARIMA Modeling 

ARIMA (p,d,q) modeling is carried out following the Box-Jenkins stages, namely 

identifying data stationarity through stationarity in variance and mean; determining 

temporary ARIMA order (p,d,q) based on ACF and PACF graphs; parameter estimation; 

diagnostic examination, and forecasting. ARIMA models along with forecast accuracy are 

shown in Table 1.  

Table 1. Forecast evaluation of ARIMA 

ARIMA models White Noise RMSEP 
(0,0,1)(0,1,1)12 Yes 65.552 

([1,3,5],0,0)(2,1,0)12 Yes 68.632 

The ARIMA model is more accurate in ARIMA (0,0,1)(0,1,1)12 using RMSEP evaluation. 

 

2. Feed Forward Neural Network (FFNN) 

At the FFNN modeling stage, we form an NN architecture with a combination of 

neurons in each hidden layer. It also carries out a combination of algorithms and activation 

functions. The input variables, which are the initial values in the FFNN architecture, are 

seen based on the PACF graph of significant lags 1 3 5 12 13 15 17 24{ , , , , , , , }t t t t t t t ty y y y y y y y− − − − − − − −  

Table 2. Forecast evaluation of FFNN using standardized preprocessing 
Rprop- Rprop+ 

Neuron Test tanh Test log Test tanh Test log 

1 85.644 85.733 85.697 85.689 

2 75.953 75.858 100.358 75.577 

3 90.809 92.706 117.529 67.238 

4 95.274 58.882 78.562 74.887 

5 127.755 87.463 132.249 147.302 

6 148.567 87.884 147.779 130.245 

7 101.211 116.546 147.047 96.924 

8 83.6935 163.920 114.704 95.592 

9 218.357 167.571 87.2509 137.986 

10 179.264 124.907 188.453 153.474 

 

Table 3. Forecast evaluation of FFNN using normalized preprocessing 
Rprop- Rprop+ 

Neuron Test tanh Test log Test tanh Test log 

1 81.961 81.933 82.730 81.882 

2 72.221 72.434 72.643 73.087 

3 74.229 56.237 62.611 69.224 

4 80.236 91.173 107.078 51.961 

5 72.424 95.602 68.821 85.179 

6 130.252 66.680 79.918 97.061 

7 147.347 95.671 142.745 94.956 

8 124.509 643.671 799.918 82.737 

9 127.059 128.918 1396.57 97.498 

10 138.653 98.194 99.694 98.048 
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Table 4. Forecast evaluation of FFNN using adjusted normalized preprocessing 
Rprop- Rprop+ 

Neuron Test tanh Test log Test tanh Test log 

1 83.883 83.881 83.994 83.854 

2 75.957 73.765 76.043 76.337 

3 74.653 90.767 74.629 124.27 

4 73.800 77.655 115.977 74.319 

5 90.457 99.334 98.921 64.196 

6 105.844 97.168 104.941 81.509 

7 149.521 75.194 222.455 120.726 

8 106.686 111.952 154.455 106.033 

9 96.391 163.017 141.934 96.548 

10 309.068 118.408 109.435 232.803 

Based on Tables 2, 3, and 4, it can be concluded that the performance of the 

Feedforward Neural Network (FFNN) model is significantly influenced by the data 

preprocessing method, training algorithm (Rprop- or Rprop+), number of neurons, and 

activation function (tanh or logistic). Among the three tables, the normalized preprocessing 

method generally yields better performance, as indicated by lower RMSEP (Root Mean 

Square Error of Prediction) values compared to other preprocessing techniques. The best 

result is observed in Table 3, where using 4 neurons, the logistic activation function, 

Rprop+ algorithm, and normalized preprocessing produces the lowest RMSEP of 51.961. 

This combination significantly reduces prediction error. Moreover, the logistic activation 

function tends to outperform tanh in most cases, highlighting the importance of selecting 

an appropriate activation function when designing the FFNN architecture. 

 

3. Feed Forward Neural Network (FFNN) using ARIMA Model 

From the modeling of ARIMA, we use input model from ARIMA 

([1,3,5],0,0)(2,1,0)12. ARIMA model selection using subset because the nonseasonal AR 

model and seasonal AR model with differencing 12.  

Table 5. Forecast evaluation of FFNN input ARIMA model 
Rprop- Rprop+ 

Neuron Test tanh Test log Test tanh Test log 

1 66.884 66.869 67.263 66.990 

2 89.193 87.735 88.743 87.293 

3 88.007 86.462 70.827 57.057 

4 72.414 98.901 86.933 96.239 

5 105.877 91.439 78.270 94.123 

6 102.805 67.842 101.297 121.321 

7 74.113 75.623 110.471 393.740 

8 86.111 133.759 84.130 107.857 

9 96.272 163.290 373.684 168.343 

10 515.559 99.662 650.098 98.330 
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4. Deep Learning Neural Network Model 

DLNN model input variables significant lag from PACF 

1 3 5 12 13 15 17 24{ , , , , , , , }t t t t t t t ty y y y y y y y− − − − − − − − . The algorithms tested using the DLNN method are 

Rprop + and Rprop- without replication. The DLNN architectures that will be applied are 

two hidden layers with 1 to 3 neurons in each layer. We didn't use replication because the 

value is not affected by adding nodes in the DLNN layer.  

Table 6. Forecast evaluation of DLNN-PACF using standardized preprocessing 

Neuron 

RPROP+ RPROP- 

Tanh Logistic Tanh Logistic 

RMSEP RMSEP RMSEP RMSEP 

1-1 67.251 67.076 67.245 67.096 

1-2 66.021 69.988 66.142 67.244 

2-1 63.402 62.548 67.255 66.966 

2-2 67.285 66.952 64.752 77.899 

3-1 81.865 91.923   

3-2 74.233 101.670   

 

 

Table 7. Forecast evaluation of DLNN-PACF using normalized preprocessing 

Neuron 

RPROP+ RPROP- 

Tanh Logistic Tanh Logistic 

RMSEP RMSEP RMSEP RMSEP 

1-1 63.717 63.816 63.165 63.723 

1-2 75.864 75.666 75.143 77.301 

2-1 75.469 64.850 78.878 60.537 

2-2 64.145 64.877 62.778 63.775 

3-1 74.664 75.870 74.736 70.666 

3-2 72.510 70.259 63.631 58.744 

 

 

Table 8. Forecast evaluation of DLNN-PACF using adjusted normalized preprocessing 

Neuron 

RPROP+ RPROP- 

Tanh Logistic Tanh Logistic 

RMSEP RMSEP RMSEP RMSEP 

1-1 65.316 65.310 65.364 64.983 

1-2 67.452 77.425 82.532 61.499 

2-1 66.839 68.093 81.649 66.918 

2-2 64.916 64.956 64.808 64.873 

3-1 77.120 69.032 62.702 64.051 

3-2 75.879 65.669 64.942 65.733 

Based on Table 6, Table 7, and Table 8, the best DLNN model results are obtained 

when using the Rprop-algorithm. However, when the standardized data as input selection, 

the convergence model is not achieved when the first neuron is more than two. Probably, it 
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is because the uncontrolled weight and bias on it neuron make too many iterations needed 

to reach convergence. The convergence iteration criteria which has been declare at the 

beginning were not enough to make the model on neuron be convergence, so it must be 

modified again, moreover the more neurons the older time needed for converging model.  

 

5. Evaluation 

The use of Rprop- algorithm will produce a good DLNN when using normalized 

data as preprocessing data and logictic activation function. From the Neural Network input 

simulation, we found that FFNN method with PACF input using Rprop+ on neuron 4 has 

the best accuracy. Then we use stepwise on PACF input to get a significant lag. The 

result of stepwise method shows that significant lag input from PACF are 

1 3 5 12 15{ , , , , }t t t t ty y y y y− − − − − and RMSEP value obtained by 59.759. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The result show that FFNN (single hidden layer) not only fast but also more 

accurate than DLNN (multiple hidden layers) to estimate only in time series data as 

explained in Nakama (2011). The developement using stepwise to optimize the lag input 

for Neural Network. The stepwise process give us a glimps that it could make the process 

to estimate FFNN faster that without stepwise.  

 

CONCLUSION 

Based on the results, normalization proved to be the most effective preprocessing 

method for NN input, leading to better performance in the forecasting model. The best 

activation function identified was logistic, combined with the Rprop+ algorithm. When 

 

Figure 6. Rainfall forecast from (a) Lag PACF input model (b) Stepwise 

methods input models 
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analyzing rainfall data in Wonorejo Reservoir, the FFNN method outperformed both 

ARIMA and DLNN models, as it achieved the lowest RMSEP. 

To optimize input selection, the stepwise method was applied, reducing the number 

of input variables from eight to five. While this process did not lead to significant changes 

in forecasting accuracy, it notably reduced computation time. However, when applied to 

input lag selection, the stepwise approach resulted in a higher RMSEP, indicating a trade-

off between accuracy and faster estimation. In practice, this trade-off may be beneficial 

when computational efficiency is a priority, but it may not be ideal when accuracy is the 

primary concern. 

This study highlights the importance of selecting appropriate preprocessing and 

input selection methods in neural network-based time series forecasting. However, it is 

limited to a specific dataset and parameter configurations. Future research should explore 

alternative optimization techniques, different neural network architectures, and the impact 

of hybrid approaches to further improve forecasting performance while balancing accuracy 

and computational efficiency. 

 

ACKNOWLEDGMENT 

We would like to thank the Ministry of Education, Culture, Research and 

Technology, Telkom University, and Mulawarman University 

 

REFERENCES 

Andriyana, Y., Falah, A. N., Ruchjana, B. N., Sulaiman, A., Hermawan, E., Harjana, T., & 

Lim-Polestico, D. Lou. (2024). Spatial Durbin Model with Expansion Using 

Casetti’s Approach: A Case Study for Rainfall Prediction in Java Island, 

Indonesia. Mathematics, 12(15), 2304. https://doi.org/10.3390/math12152304 

Apaydin, H., Feizi, H., Sattari, M. T., Colak, M. S., Shamshirband, S., & Chau, K. W. 

(2020). Comparative analysis of recurrent neural network architectures for 

reservoir inflow forecasting. Water (Switzerland), 12(5), 1-18. 

https://doi.org/10.3390/w12051500  

Dani, A. T., Fauziyah, M., & Sandariria, H. (2023). Forecasting The Search Trends of The 

Keyword “Sarung Wadimor” In Indonesia on Google Trends Data Using Time 

Series Regression with Calender Variation and Arima Box-Jenkins. Jurnal 

Matematika, Statistika Dan Komputasi, 19(3), 447–459. 

https://doi.org/10.20956/j.v19i3.24551  

Ge, W., Lalbakhsh, P., Isai, L., Lenskiy, A., & Suominen, H. (2022). Neural Network-

Based Financial Volatility Forecasting: A Systematic Review. ACM Computing 

Surveys, 55(1), 1-30. Association for Computing Machinery. 

https://doi.org/10.1145/3483596  

 

https://doi.org/10.3390/math12152304
https://doi.org/10.3390/w12051500
https://doi.org/10.20956/j.v19i3.24551
https://doi.org/10.1145/3483596


 

 

  

619 Regita Permata, Andrea Tri Rian Dani 

Hutagalung, A. A., & Sari, R. F. (2024). Forecasting Indihome Users By Using 

Trigonometrics, Box Cox, Transformation, Arma Error, Trend, And Seasonal 

(TBATS) Methods. Mathline : Jurnal Matematika Dan Pendidikan Matematika, 

9(1), 243–256. https://doi.org/10.31943/mathline.v9i1.579 

Jeremy, N. H., & Suhartono, D. (2021). Automatic personality prediction from Indonesian 

user on twitter using word embedding and neural networks. Procedia Computer 

Science, 179, 416–422. https://doi.org/10.1016/j.procs.2021.01.024  

Makridakis, S., Assimakopoulos, V., & Spiliotis, E. (2018). Objectivity, reproducibility 

and replicability in forecasting research. International Journal of Forecasting, 

34(4), 835–838. Elsevier B.V. https://doi.org/10.1016/j.ijforecast.2018.05.001  

Makridakis, S., Hyndman, R. J., & Petropoulos, F. (2020). Forecasting in social settings: 

The state of the art. International Journal of Forecasting, 36(1), 15–28. 

https://doi.org/10.1016/j.ijforecast.2019.05.011  

Makridakis, S., Spiliotis, and V. Assimakopoulos, “Statistical and Machine Learning 

forecasting methods: Concerns and ways forward,” PLOS ONE, vol. 13, no. 3, p. 

e0194889, Mar. 2018, doi: 10.1371/journal.pone.0194889. 

Mislan, M., & Dani, A. T. R. (2024). Forecasting Maximum Water Level Data for Post 

Sangkuliman using An Artificial Neural Network Backpropagation Algorithm. 

JTAM (Jurnal Teori Dan Aplikasi Matematika), 8(2), 465-578. 

https://doi.org/10.31764/jtam.v8i2.20112  

Munandar, D., Ruchjana, B. N., Abdullah, A. S., & Pardede, H. F. (2023). Literature 

Review on Integrating Generalized Space-Time Autoregressive Integrated 

Moving Average (GSTARIMA) and Deep Neural Networks in Machine Learning 

for Climate Forecasting. Mathematics, 11(13), 3-25. Multidisciplinary Digital 

Publishing Institute (MDPI). https://doi.org/10.3390/math11132975 

Narvekar, M., & Fargose, P. (2015). Daily Weather Forecasting using Artificial Neural 

Network. International Journal of Computer Applications, 121(22), 9-13. 

DOI=10.5120/21830-5088 

Pontoh, R. S., Toharudin, T., Ruchjana, B. N., Sijabat, N., & Puspita, M. D. (2022). 

Bandung Rainfall Forecast and Its Relationship with Niño 3.4 Using Nonlinear 

Autoregressive Exogenous Neural Network. Atmosphere, 13(2), 1-17. 

https://doi.org/10.3390/atmos13020302 

Permata, R. P., Ni’mah, R., & Dani, A. T. R. (2024). Daily Rainfall Forecasting with 

ARIMA Exogenous Variables and Support Vector Regression. Jurnal Varian, 

7(2), 177–188. https://doi.org/10.30812/varian.v7i2.3202  

Putri, J. A., Suhartono, S., Prabowo, H., Salehah, N. A., Prastyo, D. D., & Setiawan, S. 

(2021). Forecasting Currency in East Java: Classical Time Series vs. Machine 

Learning. Indonesian Journal of Statistics and Its Applications, 5(2), 284–303. 

https://doi.org/10.29244/ijsa.v5i2p284-303  

Rahman, N. H. A., Lee, M. H., Suhartono, & Latif, M. T. (2015). Artificial neural 

networks and fuzzy time series forecasting: an application to air quality. Quality 

and Quantity, 49(6), 2633–2647. https://doi.org/10.1007/s11135-014-0132-6  

Suhartono, Setyowati, E., Salehah, N. A., Lee, M. H., Rahayu, S. P., & Ulama, B. S. S. 

(2019). A hybrid singular spectrum analysis and neural networks for forecasting 

inflow and outflow currency of bank Indonesia. Communications in Computer 

and Information Science, 937, 3–18. https://doi.org/10.1007/978-981-13-3441-

2_1  

Suhartono, Ashari, D. E., Prastyo, D. D., Kuswanto, H., & Lee, M. H. (2019). Deep neural 

network for forecasting inflow and outflow in Indonesia. Sains Malaysiana, 48(8), 

1787–1798. https://doi.org/10.17576/jsm-2019-4808-26  

https://doi.org/10.31943/mathline.v9i1.579
https://doi.org/10.1016/j.procs.2021.01.024
https://doi.org/10.1016/j.ijforecast.2018.05.001
https://doi.org/10.1016/j.ijforecast.2019.05.011
doi:%2010.1371/journal.pone.0194889
https://doi.org/10.31764/jtam.v8i2.20112
https://doi.org/10.3390/math11132975
DOI=10.5120/21830-5088
https://doi.org/10.3390/atmos13020302
https://doi.org/10.30812/varian.v7i2.3202
https://doi.org/10.29244/ijsa.v5i2p284-303
https://doi.org/10.1007/s11135-014-0132-6
https://doi.org/10.1007/978-981-13-3441-2_1
https://doi.org/10.1007/978-981-13-3441-2_1
https://doi.org/10.17576/jsm-2019-4808-26


 

 

 

620 Comparative Analysis Of Neural Network Model Selection and Data Transformation 

For Rainfall Forecasting 

Suhartono, B. S. S. Ulama, and A. J. Endharta. 2010. “Seasonal Time Series Data 

Forecasting by Using Neural Networks Multiscale Autoregressive Model.” 

American Journal of Applied Sciences 7(10):1372–78. 

doi:10.3844/ajassp.2010.1372.1378. 

Tran, T. T. K., Bateni, S. M., Ki, S. J., & Vosoughifar, H. (2021). A review of neural 

networks for air temperature forecasting. Water (Switzerland), 13(9), 1-15. MDPI 

AG. https://doi.org/10.3390/w13091294  

Wang, Y., Zou, R., Liu, F., Zhang, L., & Liu, Q. (2021). A review of wind speed and wind 

power forecasting with deep neural networks. Applied Energy, 304. 

https://doi.org/10.1016/j.apenergy.2021.117766  

Wanto, A., Fauzan, M., Suhendro, D., Parlina, I., Damanik, B. E., Siregar, P. A., & 

Hidayati, N. (2021). Epoch Analysis and Accuracy 3 ANN Algorithm using 

Consumer Price Index Data in Indonesia. Proceedings of the 3rd International 

Conference of Computer, Environment, Agriculture, Social Science, Health 

Science, Engineering and Technology ICEST, 1, 35–41. 

https://doi.org/10.5220/0010037400350041  

Zen, M. A., Wahyuningsih, S., Tri, A., Dani, R., Ekonomi, S., Bisnis, D., Statistika, S., 

Matematika, J., Matematika, F., Ilmu, D., Alam, P., Mulawarman, U., Samarinda, 

K., Timur, I., & Terapan, L. S. (2023). Aplikasi Pengelompokan Data Runtun 

Waktu dengan Algoritma K-Medoids. INFERENSI, 6(2), 2721–3862. 

https://doi.org/10.12962/j27213862.vxix.xxxx 

10.3844/ajassp.2010.1372.1378
https://doi.org/10.3390/w13091294
https://doi.org/10.1016/j.apenergy.2021.117766
https://doi.org/10.5220/0010037400350041
https://doi.org/10.12962/j27213862.vxix.xxxx

