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ABSTRACT

The selection of input models in neural networks significantly influences predictive accuracy in
time series forecasting. This study evaluates different input models for neural networks in rainfall
prediction using data from the Wonorejo Reservoir, Surabaya. The neural network inputs are
determined based on significant lags identified through the Partial Autocorrelation Function
(PACF) and ARIMA models. Simulation results indicate that the best Feed Forward Neural
Network (FFNN) model utilizes PACF-derived input lags and is trained using the Rprop+
algorithm with a logistic activation function. Meanwhile, the optimal Deep Learning Neural
Network (DLNN) model employs the Rprop- algorithm with a logistic activation function. The
best-performing model for rainfall forecasting, based on the lowest Root Mean Squared Error of
Prediction (RMSEP), is the FFNN model with an (8,4,1) architecture. To further refine the model,
we applied a stepwise selection process to eliminate non-significant lag inputs. However, results
show that this optimization had no substantial impact, as RMSEP increased after the stepwise
procedure.
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PRELIMINARY

Forecasting theory increasingly focuses on neural networks (NN), leading to
practical applications in time series prediction and explanatory forecasting (Makridakis et
al., 2020; Tran et al., 2021). Notwithstanding their theoretical capabilities, neural networks
have yet to demonstrate their efficacy in predicting compared to established statistical
methods, such as ARIMA or Exponential Smoothing (Ge et al., 2022; Permata et al.,
2024). NN provides a range of flexibility in the modeling process, including selecting
activation functions, suitable network topologies for input, hidden, and output nodes, and
learning methodologies (Jeremy & Suhartono, 2021). Their legitimate and reliable
application is often perceived as an art and a science (Putri et al., 2021; Wanto et al.,
2021).
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Prior studies demonstrate that the economic identification of input variables and
lags for forecasting an unknown data-generating process, in the absence of domain
knowledge, presents a critical challenge in model definition (Wang et al., 2021; Apaydin et
al., 2020). Box and Jenkins' study has opened the path for further research on the subject,
particularly in determining the most relevant input variables in time series data for Neural
Network model specifications (Jeremy & Suhartono, 2021; Pontoh et al., 2022). This task
becomes increasingly crucial as complex time series components, such as deterministic or
stochastic trends and seasonality, interact in a linear or nonlinear model with pulses, level
shifts, structural breaks, and various noise distributions (Munandar et al., 2023; Suhartono
et al., 2019). While numerous statistical methods have been established to aid in
identifying linear dependencies, their application in nonlinear prediction has yet to be
thoroughly examined. In a separate study, your work on the comparison of single and
multiple hidden-layer networks (Narvekar & Fargose, 2015; Tran et al., 2021; Putri et al.,
2021) has opened up new avenues for research and is integral to our understanding of why
single hidden-layer networks converge to linear target functions faster than multiple
hidden-layer networks (Author et al., 2010; Makridakis et al., 2017). To achieve the best
prediction outcomes, the correct model selection requires information criteria; in this case,
we utilize Root Mean Squared Error Prediction (RMSEP).

Advancements in computational analytics have facilitated real-time solutions for
practical forecasting challenges. However, the training process for NN models can be
computationally expensive. To enhance efficiency, effective data preprocessing techniques
are crucial. Normalization, in particular, plays a vital role in improving predictive
reliability by ensuring consistent data scaling before training (Rahman et al., 2015). This
study examines how different normalization techniques contribute to improved forecasting
accuracy, considering multiple factors influencing data transformation. This study
illustrates how normalization methods enhance predictive accuracy. Multiple factors for
data normalization are also taken into account.

This paper focuses on Computational Intelligence techniques in rainfall forecasting,
specifically using Neural Networks and time series approaches to predict rainfall
occurrence in a case study of Wonorejo, Surabaya (Mislan & Dani, 2024). The dataset is
selected for its distinct seasonal patterns, encompassing both dry and rainy periods
(Andriyana et al., 2024). Traditional statistical approaches alone may be insufficient in
capturing the nonlinear dependencies present in rainfall data. Thus, this research aims to
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identify the most suitable NN input model by integrating statistical techniques, such as
significant PACF lags and ARIMA modeling, to construct meaningful input variables.

This study is limited to rainfall forecasting at Wonorejo Reservoir, focusing solely
on historical rainfall data from this specific location. The NN model developed is trained
and validated using data from this region, and thus, its applicability to other geographic
areas with different climatic conditions is not addressed. The research does not explore
external environmental factors such as wind patterns, temperature fluctuations, or
topographical influences, which may also impact rainfall predictions. Additionally, while
this study compares NN-based forecasting with statistical methods like ARIMA, the
evaluation is constrained to performance metrics such as RMSEP, without incorporating
alternative validation techniques like probabilistic forecasting or uncertainty quantification.
Further research is needed to assess the generalizability of the proposed approach to other

locations with varying meteorological patterns.

METHODS
1. Autoregressive Integrated Moving Average (ARIMA p,d,q)

ARIMA is frequently referred to as the Box-Jenkins time series approach (A. T. R.
Dani et al., 2023). ARIMA is highly accurate for both short and long-term forecasting. The
ARIMA model combines the autoregressive (AR) and moving average (MA) models.
(Hutagalung & Sari, 2024; Zen et al., 2023). According to Box and Jenkins, the ARIMA
model (p,d,q) in Eq. 1.

#,(B)1-B)"Y, =6, +6,(B)a,. 1)

2. Feed Forward Neural Network (FFNN)

The Feed Forward Neural Network (FFNN) is a prevalent nonlinear model
extensively utilized for time series forecasting. FFNN has an input, hidden, and output
layer (Tran et al., 2021). Each layer comprises components known as neurons. Each
neuron receives information exclusively from the neurons in the preceding layer
(Suhartono et al., 2019). The FFNN model for univariate time series data with p inputs, q
hidden neurons, and a single output, represented as FFNN (p, q), can be articulated as
follows.

R q p
Y = f{Z{W?fjh {Zw?ixi(t)+b?]+bo]]x (2)

=1 i=1
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Where:

w) : the weights that connect input layer to hidden layer,
we : the weights that connect hidden layer to output layer.
f() : activation function,

b° and b : the biases

Xio : the input values

\f(t) : the predicted output values.

In this study, we compared two algorithm namely Rprop- and Rprop+ and use two
activations namely logistics and tanh (Wang et al., 2021). Which is given logistics
activation function follows.

1

f(x)= Tre™ 3)
+e
Tangent hyperbolic (tanh) function as the activation function, which is given as follows.
f9=S"2 @)
e +e

3. Deep Learning Neural Network (DLNN)
Deep Learning Neural Networks (DLNN) are Feed Forward Neural Networks
(FFNN) that include several hidden layers. (Makridakis et al., 2018). In the time series

model, the DLNN model with two hidden layer is given as follows.

S r P
Y = f°[2ai .l [Zﬂij fr {Zyitxim +b'j‘l]+bih21+b°]+gt (5)
i=1 j=1 t=1
The architectures of FFNN and DLNN are shown in Fig. 1.
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Figure 1. Visualization the architecture of FFNN (left) and DLNN (right)

4. Evaluation Model using Root Mean Square Error Prediction (RMSEP)

To evaluate the forecasting performance of the Feedforward Neural Network
(FFNN) models, we employed the Root Mean Square Error of Prediction (RMSEP) as the
primary evaluation metric. RMSEP is a widely used measure to assess the accuracy of
predictive models, especially in regression and time series forecasting contexts. It is
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defined as the square root of the mean of the squared differences between the actual
observed values and the predicted values:

INERN 5 )2
RMSEP = E;(yi—yo ©)

where vy, denotes the actual observed value, 9, is the predicted value, and nnn is the total

number of test data points. The RMSEP metric is particularly useful because it penalizes
larger errors more heavily due to the squaring operation, thus providing a sensitive
measure of model accuracy. Lower RMSEP values indicate better model performance.
5. Input Selection

Stepwise selection expands the forward selection technique by allowing the
removal of input variables at any later iteration. This method is commonly employed to
create linear regression models, and stepwise regression is a good illustration. This
wrapper method repeatedly builds linear models by estimating their coefficients and
adding new input variables. The input variables are kept after analyzing the newly formed
model's coefficients. After k+1 input variables are judged to be no better than the previous
k, the selection procedure is repeated until the model meets optimality criteria, such as the
AIC. Figure 2 shows the neural network with the considerable lag added by the preceding

phases after the input models impacted by the stepwise procedure were determined.

Lag input model . Stepwise » NN

Figure 2. Diagram of Stepwise

6. Input Variable Selection for Neural Network

Our research here takes advantage of recently discovered rainfall data from
Wonorejo. The dataset covers 1998-2018, with monthly rainfall data included. We create
two sets of data: one which is used for training and the other which is used for testing. The
training set contains data from January 1998 to December 2016, while the remaining data
is used for testing.

The correct amount of hidden units, or the complexity of functional form, and the
essential input variables must be selected before a network design can be specified. In this

study, we used one hidden layer and tried 1 to 10 neuron units with ten replications in
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FFNN models, compared two algorithms, namely Rprop- and Rprop+! and used two
activations, namely logistics and tanh. Previous research in neural network modeling
asserts that determining the pertinent time series delays by means of seasonal 12
differencing requires just an examination of the AR terms derived by PACF-analysis.

This flowchart illustrates the modeling and evaluation process in time series
analysis using ARIMA and neural networks. The process begins with data transformation
and progresses through model training and evaluation. The process starts with data
transformation to ensure optimal data quality before analysis. Next, the Partial
Autocorrelation Function (PACF) is used to identify significant lag dependencies. Based
on the PACF results, significant lag inputs are generated and utilized in the ARIMA model
as well as for input selection in neural network models. Two types of neural network
models are employed: Feedforward Neural Network (FFNN) and Deep Learning Neural
Network (DLNN). After training these models, the results are compared and evaluated to

determine the best approach for time series forecasting.
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Figure 3. Flowchart

RESULT AND DISCUSSION
1. Exploratory Data
The average rainfall in the Wonorejo Surabaya during the 1998-2006 period was

213.52 mm. The time series plot shows that rainfall is seasonal in a year and has a

1 Rprop- (Resilient Propagation Minus) and Rprop+ (Resilient Propagation Plus) are two variations of the
Resilient Backpropagation (Rprop) optimization algorithm used for training neural networks (Mosca and
Magoulas 2015).
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tendency to increase from October to March. Time series plot of Wonorejo rainfall are

given Fig. 4.
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Figure 4. Time Series plot of Wonorejo rainfall

Figure 5 shows that in January, February, March, April, November and December
the average value of rainfall is quite high. Meanwhile, in July, August and September have
average rainfall was low, which indicates that there is a dry season and the season from the
rainy season to the dry season or vice versa in the month. In 2016 there were differences in
rainfall patterns in August and September so that it showed a higher rainfall pattern than

other patterns.

Ween of ¥t Al

Figure 5. Line plots of Wonorejo rainfall

613




614 Comparative Analysis Of Neural Network Model Selection and Data Transformation
For Rainfall Forecasting

ARIMA Modeling

ARIMA (p,d,q) modeling is carried out following the Box-Jenkins stages, namely
identifying data stationarity through stationarity in variance and mean; determining
temporary ARIMA order (p,d,q) based on ACF and PACF graphs; parameter estimation;
diagnostic examination, and forecasting. ARIMA models along with forecast accuracy are
shown in Table 1.

Table 1. Forecast evaluation of ARIMA

ARIMA models White Noise RMSEP
(0,0,1)(0,1,1)2 Yes 65.552
([1,3,5],0,0)(2,1,0)%2 Yes 68.632

The ARIMA model is more accurate in ARIMA (0,0,1)(0,1,1)12 using RMSEP evaluation.

2. Feed Forward Neural Network (FFNN)

At the FFNN modeling stage, we form an NN architecture with a combination of
neurons in each hidden layer. It also carries out a combination of algorithms and activation
functions. The input variables, which are the initial values in the FFNN architecture, are
seen based on the PACF graph of significant 1ags {y, ;. Y. s Yi s+ Yia2s Yi 1z Yias Ye17s Yeooat

Table 2. Forecast evaluation of FFNN using standardized preprocessing

Rprop- Rprop+
Neuron Test tanh Test log Test tanh Test log
1 85.644 85.733 85.697 85.689
2 75.953 75.858 100.358 75577
3 90.809 92.706 117.529 67.238
4 95.274 58.882 78.562 74.887
5 127.755 87.463 132.249 147.302
6 148.567 87.884 147.779 130.245
7 101.211 116.546 147.047 96.924
8 83.6935 163.920 114.704 95.592
9 218.357 167.571 87.2509 137.986
10 179.264 124.907 188.453 153.474

Table 3. Forecast evaluation of FENN using normalized preprocessing

Rprop- Rprop+

Neuron Test tanh Test log Test tanh Test log
1 81.961 81.933 82.730 81.882
2 72.221 72.434 72.643 73.087
3 74.229 56.237 62.611 69.224
4 80.236 91.173 107.078 51.961
5 72.424 95.602 68.821 85.179
6 130.252 66.680 79.918 97.061
7 147.347 95.671 142.745 94.956
8 124.509 643.671 799.918 82.737
9 127.059 128.918 1396.57 97.498
10 138.653 98.194 99.694 08.048
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Table 4. Forecast evaluation of FENN using adjusted normalized preprocessing

Rprop- Rprop+

Neuron Test tanh Test log Test tanh Test log
1 83.883 83.881 83.994 83.854
2 75.957 73.765 76.043 76.337
3 74.653 90.767 74.629 124.27
4 73.800 77.655 115.977 74.319
5 90.457 99.334 98.921 64.196
6 105.844 97.168 104.941 81.509
7 149.521 75.194 222.455 120.726
8 106.686 111.952 154.455 106.033
9 96.391 163.017 141.934 96.548
10 309.068 118.408 109.435 232.803

Based on Tables 2, 3, and 4, it can be concluded that the performance of the
Feedforward Neural Network (FFNN) model is significantly influenced by the data
preprocessing method, training algorithm (Rprop- or Rprop+), number of neurons, and
activation function (tanh or logistic). Among the three tables, the normalized preprocessing
method generally yields better performance, as indicated by lower RMSEP (Root Mean
Square Error of Prediction) values compared to other preprocessing techniques. The best
result is observed in Table 3, where using 4 neurons, the logistic activation function,
Rprop+ algorithm, and normalized preprocessing produces the lowest RMSEP of 51.961.
This combination significantly reduces prediction error. Moreover, the logistic activation
function tends to outperform tanh in most cases, highlighting the importance of selecting

an appropriate activation function when designing the FFNN architecture.

3. Feed Forward Neural Network (FFNN) using ARIMA Model
From the modeling of ARIMA, we use input model from ARIMA
([1,3,5],0,0)(2,1,0)*?. ARIMA model selection using subset because the nonseasonal AR
model and seasonal AR model with differencing 12.
Table 5. Forecast evaluation of FENN input ARIMA model

Rprop- Rprop+

Neuron Test tanh Test log Test tanh Test log
1 66.884 66.869 67.263 66.990
2 89.193 87.735 88.743 87.293
3 88.007 86.462 70.827 57.057
4 72.414 98.901 86.933 96.239
5 105.877 91.439 78.270 94.123
6 102.805 67.842 101.297 121.321
7 74.113 75.623 110.471 393.740
8 86.111 133.759 84.130 107.857
9 96.272 163.290 373.684 168.343
10 515.559 99.662 650.098 98.330
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4. Deep Learning Neural Network Model
DLNN model input  variables  significant lag from PACF

Ve Yoo Yis Yoo Yeas Yeuss Years Yeaed . The algorithms tested using the DLNN method are
Rprop + and Rprop- without replication. The DLNN architectures that will be applied are
two hidden layers with 1 to 3 neurons in each layer. We didn't use replication because the
value is not affected by adding nodes in the DLNN layer.

Table 6. Forecast evaluation of DLNN-PACEF using standardized preprocessing

RPROP+ RPROP-

Neuron Tanh Logistic Tanh Logistic

RMSEP RMSEP RMSEP RMSEP

1-1 67.251 67.076 67.245 67.096

1-2 66.021 69.988 66.142 67.244

2-1 63.402 62.548 67.255 66.966

2-2 67.285 66.952 64.752 77.899
3-1 81.865 91.923
3-2 74.233 101.670

Table 7. Forecast evaluation of DLNN-PACF using normalized preprocessing

RPROP+ RPROP-
Neuron Tanh Logistic Tanh Logistic
RMSEP RMSEP RMSEP RMSEP
11 63.717 63.816 63.165 63.723
1-2 75.864 75.666 75.143 77.301
2-1 75.469 64.850 78.878 60.537
2-2 64.145 64.877 62.778 63.775
31 74.664 75.870 74.736 70.666
3-2 72.510 70.259 63.631 58.744

Table 8. Forecast evaluation of DLNN-PACF using adjusted normalized preprocessing

RPROP+ RPROP-
Neuron Tanh Logistic Tanh Logistic
RMSEP RMSEP RMSEP RMSEP

11 65.316 65.310 65.364 64.983
1-2 67.452 77.425 82.532 61.499
2-1 66.839 68.093 81.649 66.918
2-2 64.916 64.956 64.808 64.873
3-1 77.120 69.032 62.702 64.051
3-2 75.879 65.669 64.942 65.733

Based on Table 6, Table 7, and Table 8, the best DLNN model results are obtained
when using the Rprop-algorithm. However, when the standardized data as input selection,

the convergence model is not achieved when the first neuron is more than two. Probably, it
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is because the uncontrolled weight and bias on it neuron make too many iterations needed
to reach convergence. The convergence iteration criteria which has been declare at the
beginning were not enough to make the model on neuron be convergence, so it must be

modified again, moreover the more neurons the older time needed for converging model.

5. Evaluation

The use of Rprop- algorithm will produce a good DLNN when using normalized
data as preprocessing data and logictic activation function. From the Neural Network input
simulation, we found that FFNN method with PACF input using Rprop+ on neuron 4 has
the best accuracy. Then we use stepwise on PACF input to get a significant lag. The

result of stepwise method shows that significant lag input from PACF are

Wear Year Yess Yirzr Yeash and RMSEP value obtained by 59.759.

TTTI T T T T T I I T P T T T T e T T T T T e rrrerT

124 M7 260 280 26 260 2% 29 232 235 238 241 244 MT 250 253 26 259 262

Figure 6. Rainfall forecast from (a) Lag PACF input model (b) Stepwise
methods input models

The result show that FFNN (single hidden layer) not only fast but also more
accurate than DLNN (multiple hidden layers) to estimate only in time series data as
explained in Nakama (2011). The developement using stepwise to optimize the lag input
for Neural Network. The stepwise process give us a glimps that it could make the process
to estimate FFNN faster that without stepwise.

CONCLUSION
Based on the results, normalization proved to be the most effective preprocessing
method for NN input, leading to better performance in the forecasting model. The best

activation function identified was logistic, combined with the Rprop+ algorithm. When
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analyzing rainfall data in Wonorejo Reservoir, the FFNN method outperformed both
ARIMA and DLNN models, as it achieved the lowest RMSEP.

To optimize input selection, the stepwise method was applied, reducing the number
of input variables from eight to five. While this process did not lead to significant changes
in forecasting accuracy, it notably reduced computation time. However, when applied to
input lag selection, the stepwise approach resulted in a higher RMSEP, indicating a trade-
off between accuracy and faster estimation. In practice, this trade-off may be beneficial
when computational efficiency is a priority, but it may not be ideal when accuracy is the
primary concern.

This study highlights the importance of selecting appropriate preprocessing and
input selection methods in neural network-based time series forecasting. However, it is
limited to a specific dataset and parameter configurations. Future research should explore
alternative optimization techniques, different neural network architectures, and the impact
of hybrid approaches to further improve forecasting performance while balancing accuracy

and computational efficiency.
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