MATHLINE ISSN 2502-5872 (Print)
JURNAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA ISSN 2622-3627 (Elektronik)

Volume 10 Nomor 4, November 2025, 783-794

OPTIMAL CONTROL ANALYSIS OF THE EBOLA TRANSMISSION
MODEL WITH VACCINATION

Siti Laelatul Chasanah!”, Dina Eka Nurvazly?, Aulia Nufus®
123Department of Mathematics, Universitas Lampung, Bandar Lampung, Lampung, Indonesia
*Correspondence: siti.chasanah@fmipa.unila.ac.id

ABSTRACT

Ebola virus disease (EVD) is a deadly disease caused by viruses within the genus Ebolavirus. Over
34,710 people have died from the virus globally, and outbreaks have shown that it spreads rapidly
and uncontrollably. This research aims to find the optimal control to prevent the spread of EVD
through vaccines. The population is divided into six, namely susceptible (S), vaccinated (V),
infectious (1), treated (T), recovered (R), and deceased (D). We construct the model's optimal control
parameters using the Pontryagin Principle. Vaccinations are only administered during specific
periods. The optimal control interpretation was then obtained using numerical simulations. The
results of this study indicate that the natural birth rate and the rate of contact of deceased humans
have a much greater impact on the faster spread of the disease. Furthermore, it would be more
effective to reduce the spread of EVD by providing vaccination compared to treating infected
individuals. In conclusion, vaccination will be more effective if administered every two weeks. This
is because it will lower the number of infected individuals significantly and reduce the cost of
vaccination.
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PRELIMINARY

Ebola virus disease (EVD) is a deadly disease caused by viruses within the genus
Ebolavirus (Centers for Disease Control and Prevention (CDC), 2024). This virus can enter
a person's body through cuts in the skin or unprotected mucous membranes with direct
contact using the blood or bodily fluids of a person infected with EVD. Each case of EVD
has three phases: incubation, early infective, and advanced infective (Jiang et al., 2017).
From 2018 to 2020 there are more than 2000 deaths occurred in the Democratic Republic of
Congo. The mortality rate in the current EVD outbreak ranges between 55% and 60% (World
Health Organization (WHO), 2023). Over 34,710 people have died from the virus globally,
and outbreaks have shown that it spreads rapidly and uncontrollably (Tanveer et al., 2024).
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To decrease the potential of EVD transmission, we should increase awareness to
lower the risk factors for EVD infection owing to human transmission and implement a
vaccination or other antiviral medicines that people will take (Rafiq et al., 2020). As a
preventive strategy, vaccines and treatment can suppress the number of EVD cases (Walldorf
etal.,2019). The EVD vaccine can be used by individuals over 12 months (The United States
Government, 2023). People who receive the vaccine should continue to take precautions to
avoid exposure to the virus (World Health Organization (WHO), 2020). The Ervebo vaccine
was found to be 95 — 100% effective in protecting humans against EVD (Woolsey &
Geisbert, 2021). The Democratic Republic of Congo (DRC) found that antibodies were still
present in individuals six months after vaccination.

Several obstacles arise in the implementation of vaccination, such as the cost. In
2014, West Africa estimated the cost impact of an EVD outbreak to be between $30 and $50
(Obeng-Kusi et al., 2024). Over four months in 2014, the projected preventive expenditures
for EVD in selected organizations in Nigeria were more than 1 billion Naira (Olugasa et al.,
2015). Despite these costs, vaccination is a helpful strategy for reducing disease transmission
and mortality cases in subsequent outbreaks (Walldorf et al., 2019). The accessibility of
vaccines and the ability to combine vaccination with a control strategy are some of the
factors affecting vaccination implementation. In addition, we can maximize the vaccination
intervention's effect by estimating the vaccination timing.

Vaccination at any time requires more significant costs, so there is a need for a
vaccine administration strategy to minimize intervention costs and reduce the number of
infected populations more effectively. To solve this problem, we can establish an optimal
control model for the spread of EVD to determine a strategy to minimize the cost of
vaccination interventions. Mathematical modeling has provided insights into the risk of
major epidemics and the impact of public health interventions (Chowell & Nishiura, 2014).
This mathematical model will be analyzed and simulated numerically to be interpreted in the
real world.

Several studies have been developed to describe the dynamics of EVD transmission
using antiviral therapies (Martyushev et al., 2016), isolation of infected and burial of
deceased people (Abbas et al., 2024), efficacy and behaviour changes (Kengne & Tadmon,
2024). The studies have explored various control strategies such as treating, quarantining,
education campaigns, and increasing sanitary measures controls (Bonyah et al., 2016; Seck
et al., 2022). In 2021, Juga et al. found that fear of dying from EVD may help control the

disease and lower transmission, but it is insufficient to eradicate it (Juga et al., 2021).
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There have been many studies analyzing the spread of the EVD disease using various

models and optimal control strategies. However, no one has researched optimal control using

vaccination control. Based on this, we analyzed the optimal control model for the spread of

EVD with vaccination intervention.

METHODS

This research uses a literature study method from books, journals, or research on

optimal control theory. We use the model in (Chasanah et al., 2024) to analyze the optimal

vaccination control. In the model used, we assumed that the individual population is constant

and closed. Individuals who have recovered cannot be reinfected. Additionally, there is a

possibility that individuals who are treated may recover or die. The steps taken to solve the

problems related to optimal control theory are as follows:

1.

Formulating an objective function J. The objective function used consists of two state
variables (I and T) and one control variable (y). This objective function aims to
minimize vaccination costs and the number of people infected with EVD.
Constructing the Hamiltonian function H by applying Pontryagin's principle to a
problem.

Determining the adjoint equation (Zi(t)) and the transversality condition. Multiply
the negative by the partial derivative of the Hamiltonian function H with respect to
each state variable to obtain the equation z;(t). The transversality condition is
satisfied if z;(t) = 0,i = 1, ..., 6.

Determining the optimal condition of vaccination. This condition is obtained by

setting the partial derivative of the Hamiltonian function with respect to the control

variable equal to 0 (% = 0).

Conducting numerical simulations on the infectious subpopulation with strategies
without vaccination and vaccination every two, three, and four weeks.

Figure 1. shows the flowchart of the steps taken in this study.
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Formulating an objective function J to minimize

A 4

Constructing the Hamiltonian H function by
applying Pontryagin's principle from a problem.

Determining the adjoint equation z; (t) and
transversality condition z;(t) = 0, fori = 1, ..., 6.

A 4

Determining the optimal condition of vaccination
aH
=0).
(BY(t)
Conducting numerical simulations on the infectious

subpopulation with strategies without vaccination
and vaccination every two, three, and four weeks.

A 4

Derivating conclusion and formulating
recommendations.

Figure 1. Flowchart the Steps of This Study

RESULT AND DISCUSSION
Mathematical Analysis

This section discusses an analysis, optimal control formulation, numerical
simulation, and interpretation of the model. Using the model in (Chasanah et al., 2024), we
obtain the equilibrium point, the basic reproduction number, and the local stability of the
model. The model uses a deterministic model with the vaccinated compartment. The total
population is denoted by N. The population is divided into six compartments, namely,
susceptible (§), vaccinated (1), infectious (1), deceased (D), treated (T'), and recovered (R).
So that,

N=S+V+I1+D+T+R. (1)
This model assumes that a person transmits EVD to another person or person-to-

pathogen contact. Based on this, the EVD transmission model was given by
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Figure 2. The EVD Transmission Model

Based on the EVD spread model in FIGURE 2., an EVD model that was given by

ds (B,D + B 1)S

= pN-—ys— 2T g

dt 4 N #

d_V — s (82D + 1 DpV —uv

a7 N b

dl  (B.D+pDS  (B,D + p1DpV
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dT

E:O'I_((sz‘l‘az +H)T,

dR

E= a11+a’2T—ﬂR,

‘;—f = —Dp+ 68,1+ &,T. 2)

Disease-free equilibrium of the model (2) is defined as

* * Tk * * * bN bN
DFE = (§*,V*,I*,T*,R*,D*) = (m,ﬂ(yyw,

o,o,o,o) 3)

The basic reproduction number is denoted as R, indicates how many secondary
infections are expected to result from a single infectious case in a fully susceptible
population (Delamater et al., 2019). This value is crucial in understanding whether a disease
will likely die out or continue spreading within a population (Winarni et al., 2024). When
R, is less than 1, so each infected individual is, on average, passing the disease to fewer than
one person, suggesting that the outbreak will eventually fade. On the other hand, if R, is

greater than 1, the infection is likely to spread, as each case leads to more than one new
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infection (Delamater et al., 2019). We derive the basic reproduction number of the model
(2) below.

R = b(yp + W) (B1pB + B261B + 0 3,65)
° upAB(y + )

The disease-free equilibrium point (Ej) is locally stable when the basic reproduction

number R is less than 1. Otherwise, it becomes unstable. Additionally, when the endemic
equilibrium E; exists and Ry > 1, it is locally stable (Brauer et al., 2019). Figure 3. shows
the sensitivity of R, influenced by each parameter. Parameters b, p, 1, B2, 61, and §, have a
positive influence on R,. This means that the larger the parameter value, the larger the value
of R,. Natural birth rate (b) and the rate of contact of deceased humans (8,) have a much
greater impact on the faster spread of the disease compared to the rate of contact of infectious
humans (B;) and the death rate of the quarantined individual due to EVD (8,).

The larger the values of the parameters y, i, p, o, a4, and a,, the smaller the value of
R,. Although the rate of treatment of the infectious (o) and the recovery rate of treatment
individual (@) did not have a significant impact. The rate of disposal of dead bodies (p) is
highly sensitive to a decrease in the spread of EVD. It would be more effective to reduce the

spread of EVD by providing vaccination compared to treating infected individuals.
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Figure 3. The Sensitivity of Parameters to R

We provide an optimal control model based on these dynamics involving an objective
function, adjoint equations, and optimization criteria. To perform the simulation, we apply
the parameter values listed in Table 1. The resulting numerical analysis illustrates the

population dynamics under the influence of vaccination as a control strategy.
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Table 1. The Parameter Values of the Model

Parameter Interpretations Value
N Number of population 1000
b Natural birth rate 1 / (70 % 52)
U Natural death rate 1 / (70 x 52)
y Vaccination rate 0.15
b1 The rate of contact of an infectious human 0.67
Bo The rate of contact of deceased humans 0.64
p The percentage of vaccines that cannot protect 0.002
humans
01 The death rate of a non-quarantined individual 0.75
due to EVD
6, The death rate of a quarantined individual due 0.3
to EVD
aq The recovery rate of the nontreatment 0.33
individual
a, The recovery rate of the treatment individual 0.8
o The rate of treatment of the infectious 0.019
Do The rate of disposal of dead bodies 0.0009

Optimal Control Analysis

In this section, we formulate the model's objective function (2). The objective
function depends on three state variables (infectious (I), treated (T'), recovered (R), and
deceased (D)) and vaccination (y) as control variables. This function represents the
combined cost of managing the infected population and implementing vaccination
interventions. Given that the relationship between the number of infections and vaccination
efforts is nonlinear, we use a quadratic formulation for both state and control variables.
Specifically, the terms w312 and w,T? quantify the costs related to infection and treatment.
Respectively, ¢y? captures the cost associated with vaccination, where ¢ denotes the
weighting factor. The optimal control strategies are then derived by minimizing the

constructed objective function.

T

JW) = [, (3l + w,T? + ¢py?) dt 4)
Then, the Hamiltonian function H is formed using Pontryagin's principle

H = ws3l? + w,T? + ¢py? + X5, zif; 5)

Where function f; is the right-hand side of the model (2). The adjoint variables z, for i =

1, 2,..., 6 satisfy the following co-state system

0H (B,D+p41) (B,D+p11)
_ (y+ B2 Nm )_Zzy_z3 B2 Nm ’

(B2D+B1Dp + ,LL) _

r_ _ (B2D+B1Dp
o (BB ) s

N b
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Z§=—Z—7=—2a)3l+zlﬁ#+22ﬁﬁv 23(%+ﬁlpv+51+a+a1+u)—z4a—
Z50y — Zg01,

Zy = —Z—I; = —2w,T + 2,(6, + ay + u) — zsa, — 2405,

Zs = —Z—I; = —2wsR + z5Uu,

zgz—g—g=—2w6D+zlﬁT+ zﬁZI\I;V Z3BZSJ;VBZPV+Z6p,

where the transversality condition z;(t) = 0, fori = 1,2, ..., 6.
To obtain the optimal control variable, we solve the partial derivative of a
Hamiltonian function (5) concerning the control variable y * is equal to zero. Since the control

variable is bounded in [0,1] for all t € T, we derive the optimal control variable below.

0 for—<0

ay(t)
* _ S(Zl—Zz) 0H _
- 2¢ ,for ay(t) 0

k 1 fOI‘a—(t)>0

Using the initial condition x,, we solve the variable state x(t) = a—:, where x =

(S,V,I,T,R,D) and z = (24, 2y, Z3, Z4, Zs, Z¢ ), and the co-state system z(t) = —Z—Z with

transversality conditions z,(t) = 0 for i = 1,2,...,6. We obtain the optimal control y* to

minimize the cost function J(y) as follows

. . S(zy-
y* = max {0, min {1, (Z;—JZ) }} 6)

In (6), the control variable is continuous. It means vaccination is given every time. If
vaccination is given every few years, we transform (6) into a semi-discrete function with

optimal control of the parameter y* below.

V(O = Douyv O,

t1+1]
where t; = jh, Lt t0] is the function on the interval [tj, tj+1) and y*(t) (t) is changed

every h year.

Numerical Simulation
Numerical simulations were conducted using four vaccination timing strategies: no
vaccination, vaccination every two, three, and four weeks. The parameter values and initial

population conditions used in this simulation are presented in Tables 1 and 2.
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Table 2. Initial Values of Variable

Variable

N
S(0)
V(0)
1(0)
D(0)
T(0)
R(0)
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N w F
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o o (=]
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— — — - Without vaccination
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Vaccination every 3 weeks
Vaccination every 2 weeks
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\ Vaccination every 2 weeks
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Time (week)

Figure 4. Number of Subpopulations with Several Vaccination Strategies
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From Figure 4, implementing a vaccination strategy can reduce the number of

infected individuals. The more frequently vaccination is administered, the lower the number

of infectious individuals. Without vaccination, the infectious population initially increases

before declining in the fifth week. Vaccination administered every four or three weeks

produces similar outcomes, whereas a biweekly vaccination schedule yields different results.

In this case, infectious individuals significantly decline during the first 15 weeks. Based on

this, vaccination activities will be more effective if done every two weeks. Although the cost
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is higher compared to vaccination every three or four weeks, the difference in the reduction

in the number of infected individuals is quite significant.

CONCLUSION
The study concludes that it would be more effective to reduce the spread of EVD by

providing vaccination compared to treating infected individuals. The optimal control to

S(z1-25)

2¢

vaccination can reduce the number of infected individuals in 15 weeks. More frequent

minimize the cost function of vaccination is y* = max {O, min {1, }} Implementing

vaccination schedules lead to a further decline in EVD cases. However, the improvements
are insignificant between vaccinations every three and four weeks. Among the tested
intervals, administering vaccination every two weeks proved to be the most effective. This
strategy can minimize the infection rate and reduce the overall cost of immunization efforts.
Based on the outcomes of this study, the model can be further extended to incorporate more
diverse vaccination timing scenarios and to consider additional parameters that may

significantly influence the system’s outcomes.

ACKNOWLEDGMENT
This study was funded by Universitas Lampung through the Penelitian Dasar (PD)

research grant scheme 2023.

REFERENCES

Abbas, N., Zanib, S. A., Ramzan, S., Nazir, A., & Shatanawi, W. (2024). A conformable mathematical
model of Ebola Virus Disease and its stability analysis. Heliyon, 10(16), ¢35818.
https://doi.org/10.1016/j.heliyon.2024.e35818

Bonyah, E., Badu, K., & Asiedu-Addo, S. K. (2016). Optimal control application to an Ebola model.
Asian Pacific Journal of Tropical Biomedicine, 6(4), 283-289.
https://doi.org/10.1016/j.apjtb.2016.01.012

Brauer, F., Castillo-Chavez, C., & Feng, Z. (2019). Endemic Disease Models (pp. 63—116). Springer
. https://doi.org/10.1007/978-1-4939-9828-9 3

Centers for Disease Control and Prevention (CDC). (2024, April 23). Ebola (ebola virus disease).
January 9, 2025. Https://Www.Cdc.Gov/Ebola/about/Index.Html.

Chasanah, S. L., Nurvazly, D. E., Utami, Y. T., & Devi, T. L. N. (2024). Sensitivity analysis of Ebola
virus disease model with vaccination. THE 4TH INTERNATIONAL CONFERENCE ON
APPLIED SCIENCES, MATHEMATICS, AND INFORMATICS: ICASMI2022, 2970, 050024.
https://doi.org/10.1063/5.0208298

Chowell, G., & Nishiura, H. (2014). Transmission dynamics and control of Ebola virus disease
(EVD): areview. BMC Medicine, 12(1), 196. https://doi.org/10.1186/s12916-014-0196-0

Delamater, P. L., Street, E. J., Leslie, T. F., Yang, Y. T., & Jacobsen, K. H. (2019). Complexity of the
Basic Reproduction Number (R o ). Emerging Infectious Diseases, 25(1), 1-4.
https://doi.org/10.3201/eid2501.171901




Siti Laelatul Chasanah, Dina Eka Nurvazly, Aulia Nufus

Jiang, S., Wang, K., Li, C., Hong, G., Zhang, X., Shan, M., Li, H., & Wang, J. (2017). Mathematical
models for devising the optimal Ebola virus disease eradication. Journal of Translational
Medicine, 15(1). https://doi.org/10.1186/s12967-017-1224-6

Juga, M. L., Nyabadza, F., & Chirove, F. (2021). An Ebola virus disease model with fear and
environmental transmission dynamics. [nfectious Disease Modelling, 6, 545-559.
https://doi.org/10.1016/j.idm.2021.03.002

Kengne, J. N., & Tadmon, C. (2024). Ebola virus disease model with a nonlinear incidence rate and
density-dependent  treatment.  Infectious  Disease = Modelling,  9(3), 775-804.
https://doi.org/10.1016/j.idm.2024.03.007

Martyushev, A., Nakaoka, S., Sato, K., Noda, T., & Iwami, S. (2016). Modelling Ebola virus
dynamics:  Implications  for  therapy.  Anmtiviral = Research, 135,  62-73.
https://doi.org/10.1016/j.antiviral.2016.10.004

Obeng-Kusi, M., Martin, J., & Abraham, 1. (2024). The economic burden of Ebola virus disease: a
review and recommendations for analysis. Journal of Medical Economics, 27(1), 309-323.
https://doi.org/10.1080/13696998.2024.2313358

Olugasa, B. O., Oshinowo, O. Y., & Odigie, E. A. (2015). 20 | Babasola Oluseyi Olugasa et al. Cite
this article: Babasola Oluseyi Olugasa, Oluwafunmilola Yemisi Oshinowo, Eugene
Amienwanlen Odigie. Preventive and social cost implications of Ebola Virus Disease (EVD)
outbreak on selected organizations in Lagos state. Pan African Medical Journal, 22, 20.
https://doi.org/10.11694/pamj.supp.2015.22.1.6673

Rafig, M., Ahmad, W., Abbas, M., & Baleanu, D. (2020). A reliable and competitive mathematical
analysis of Ebola epidemic model. Advances in Difference Equations, 2020(1), 540.
https://doi.org/10.1186/s13662-020-02994-2

Seck, R., Ngom, D., Ivorra, B., & Ramos, A.M. (2022). An optimal control model to design strategies
for reducing the spread of the Ebola virus disease. Mathematical Biosciences and Engineering,
19(2), 1746—1774. https://doi.org/10.3934/mbe.2022082

Tanveer, A., Ansari, A., Hussain, H. U., Warsi, M., Mahmmoud Fadelallah Eljack, M., & Tayyaba
Rehan, S. (2024). The re-emergence of Ebola: a raising concern for a potential epidemic in
third-world countries? International Journal of Surgery: Global Health, 7(2).
https://doi.org/10.1097/gh9.0000000000000433

The United States Government. (2023, October 9). Ervebo. 2023, August 20.
Https://Www.Fda.Gov/Vaccines-Blood-Biologics/Ervebo.

Walldorf, J. A., Cloessner, E. A., Hyde, T. B., MacNeil, A., Bennett, S. D., Carter, R. J., Redd, J. T.,
& Marston, B. J. (2019). Considerations for use of Ebola vaccine during an emergency
response. Vaccine, 37(48), 7190-7200. https://doi.org/10.1016/j.vaccine.2017.08.058

Winarni, A., Sofiyati, N., & Rudatiningtyas, U. F. (2024). Analysis and Simulation of SEIR
Mathematical Model of Stunting Case in Indonesia. Mathline : Jurnal Matematika Dan
Pendidikan Matematika, 9(3), 871-886. https://doi.org/10.31943/mathline.v9i3.555

Woolsey, C., & Geisbert, T. W. (2021). Current state of Ebola virus vaccines: A snapshot. PLoS
Pathogens, 17(12). https://doi.org/10.1371/journal.ppat.1010078

World Health Organization (WHO). (2020, January 11). Ebola virus disease: Vaccines. 2023, July
21. Https://Www.Who.Int/News-Room/Questions-and-Answers/Item/Ebola-Vaccines.

World Health Organization (WHO). (2023, April 20). Ebola virus disease. 2023, July 21.
Https://Www.Who.Int/News-Room/Fact-Sheets/Detail/Ebola-Virus-Disease.

793




794 Optimal Control Analysis of the Ebola Transmission Model with Vaccination




