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ABSTRACT  
Ebola virus disease (EVD) is a deadly disease caused by viruses within the genus Ebolavirus. Over 

34,710 people have died from the virus globally, and outbreaks have shown that it spreads rapidly 

and uncontrollably. This research aims to find the optimal control to prevent the spread of EVD 

through vaccines. The population is divided into six, namely susceptible (𝑆), vaccinated (𝑉), 

infectious (𝐼), treated (𝑇), recovered (𝑅), and deceased (𝐷). We construct the model's optimal control 

parameters using the Pontryagin Principle. Vaccinations are only administered during specific 

periods. The optimal control interpretation was then obtained using numerical simulations. The 

results of this study indicate that the natural birth rate and the rate of contact of deceased humans 

have a much greater impact on the faster spread of the disease. Furthermore, it would be more 

effective to reduce the spread of EVD by providing vaccination compared to treating infected 

individuals. In conclusion, vaccination will be more effective if administered every two weeks. This 

is because it will lower the number of infected individuals significantly and reduce the cost of 

vaccination. 
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PRELIMINARY 

Ebola virus disease (EVD) is a deadly disease caused by viruses within the genus 

Ebolavirus (Centers for Disease Control and Prevention (CDC), 2024). This virus can enter 

a person's body through cuts in the skin or unprotected mucous membranes with direct 

contact using the blood or bodily fluids of a person infected with EVD. Each case of EVD 

has three phases: incubation, early infective, and advanced infective (Jiang et al., 2017). 

From 2018 to 2020 there are more than 2000 deaths occurred in the Democratic Republic of 

Congo. The mortality rate in the current EVD outbreak ranges between 55% and 60% (World 

Health Organization (WHO), 2023). Over 34,710 people have died from the virus globally, 

and outbreaks have shown that it spreads rapidly and uncontrollably (Tanveer et al., 2024). 
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To decrease the potential of EVD transmission, we should increase awareness to 

lower the risk factors for EVD infection owing to human transmission and implement a 

vaccination or other antiviral medicines that people will take (Rafiq et al., 2020). As a 

preventive strategy, vaccines and treatment can suppress the number of EVD cases (Walldorf 

et al., 2019). The EVD vaccine can be used by individuals over 12 months (The United States 

Government, 2023). People who receive the vaccine should continue to take precautions to 

avoid exposure to the virus (World Health Organization (WHO), 2020). The Ervebo vaccine 

was found to be 95 – 100% effective in protecting humans against EVD (Woolsey & 

Geisbert, 2021). The Democratic Republic of Congo (DRC) found that antibodies were still 

present in individuals six months after vaccination.  

Several obstacles arise in the implementation of vaccination, such as the cost. In 

2014, West Africa estimated the cost impact of an EVD outbreak to be between $30 and $50 

(Obeng-Kusi et al., 2024).  Over four months in 2014, the projected preventive expenditures 

for EVD in selected organizations in Nigeria were more than 1 billion Naira (Olugasa et al., 

2015). Despite these costs, vaccination is a helpful strategy for reducing disease transmission 

and mortality cases in subsequent outbreaks (Walldorf et al., 2019). The accessibility of 

vaccines and the ability to combine vaccination with a control strategy are some of the 

factors affecting vaccination implementation. In addition, we can maximize the vaccination 

intervention's effect by estimating the vaccination timing.  

Vaccination at any time requires more significant costs, so there is a need for a 

vaccine administration strategy to minimize intervention costs and reduce the number of 

infected populations more effectively. To solve this problem, we can establish an optimal 

control model for the spread of EVD to determine a strategy to minimize the cost of 

vaccination interventions. Mathematical modeling has provided insights into the risk of 

major epidemics and the impact of public health interventions (Chowell & Nishiura, 2014). 

This mathematical model will be analyzed and simulated numerically to be interpreted in the 

real world. 

Several studies have been developed to describe the dynamics of EVD transmission 

using antiviral therapies (Martyushev et al., 2016), isolation of infected and burial of 

deceased people (Abbas et al., 2024), efficacy and behaviour changes (Kengne & Tadmon, 

2024). The studies have explored various control strategies such as treating, quarantining, 

education campaigns, and increasing sanitary measures controls (Bonyah et al., 2016; Seck 

et al., 2022). In 2021, Juga et al. found that fear of dying from EVD may help control the 

disease and lower transmission, but it is insufficient to eradicate it (Juga et al., 2021).  
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There have been many studies analyzing the spread of the EVD disease using various 

models and optimal control strategies. However, no one has researched optimal control using 

vaccination control. Based on this, we analyzed the optimal control model for the spread of 

EVD with vaccination intervention.  

 

METHODS 

This research uses a literature study method from books, journals, or research on 

optimal control theory. We use the model in (Chasanah et al., 2024) to analyze the optimal 

vaccination control. In the model used, we assumed that the individual population is constant 

and closed. Individuals who have recovered cannot be reinfected. Additionally, there is a 

possibility that individuals who are treated may recover or die. The steps taken to solve the 

problems related to optimal control theory are as follows: 

1. Formulating an objective function 𝐽. The objective function used consists of two state 

variables (𝐼 and 𝑇) and one control variable (𝛾). This objective function aims to 

minimize vaccination costs and the number of people infected with EVD.  

2. Constructing the Hamiltonian function 𝐻 by applying Pontryagin's principle to a 

problem.  

3. Determining the adjoint equation (𝑧𝑖(𝑡)) and the transversality condition. Multiply 

the negative by the partial derivative of the Hamiltonian function 𝐻 with respect to 

each state variable to obtain the equation 𝑧𝑖
′(𝑡). The transversality condition is 

satisfied if 𝑧𝑖(𝑡) = 0, 𝑖 = 1,… , 6. 

4. Determining the optimal condition of vaccination. This condition is obtained by 

setting the partial derivative of the Hamiltonian function with respect to the control 

variable equal to 0 (
𝜕𝐻

𝜕𝛾(𝑡)
= 0). 

5. Conducting numerical simulations on the infectious subpopulation with strategies 

without vaccination and vaccination every two, three, and four weeks. 

Figure 1. shows the flowchart of the steps taken in this study.  
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Figure 1. Flowchart the Steps of This Study 

 

RESULT AND DISCUSSION 

Mathematical Analysis 

This section discusses an analysis, optimal control formulation, numerical 

simulation, and interpretation of the model. Using the model in (Chasanah et al., 2024), we 

obtain the equilibrium point, the basic reproduction number, and the local stability of the 

model. The model uses a deterministic model with the vaccinated compartment. The total 

population is denoted by 𝑁. The population is divided into six compartments, namely, 

susceptible (𝑆), vaccinated (𝑉), infectious (𝐼), deceased (𝐷), treated (𝑇), and recovered (𝑅). 

So that,  

𝑁 = 𝑆 + 𝑉 + 𝐼 + 𝐷 + 𝑇 + 𝑅.  (1) 

This model assumes that a person transmits EVD to another person or person-to-

pathogen contact. Based on this, the EVD transmission model was given by 
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Figure 2. The EVD Transmission Model 

 

Based on the EVD spread model in FIGURE 2., an EVD model that was given by  

𝑑𝑆

𝑑𝑡
= 𝑏𝑁 − 𝛾𝑆 −

(𝛽2𝐷 + 𝛽1𝐼)𝑆

𝑁
− 𝜇𝑆, 

𝑑𝑉

𝑑𝑡
= 𝛾𝑆 −

(𝛽2𝐷 + 𝛽1𝐼)𝑝𝑉

𝑁
− 𝜇𝑉, 

𝑑𝐼

𝑑𝑡
=
(𝛽2𝐷 + 𝛽1𝐼)𝑆

𝑁
+
(𝛽2𝐷 + 𝛽1𝐼)𝑝𝑉

𝑁
− (𝛿1 + 𝜎 + 𝛼1 + 𝜇)𝐼, 

𝑑𝑇

𝑑𝑡
= 𝜎𝐼 − (𝛿2 + 𝛼2 + 𝜇)𝑇, 

𝑑𝑅

𝑑𝑡
= 𝛼1𝐼 + 𝛼2𝑇 − 𝜇𝑅, 

𝑑𝐷

𝑑𝑡
= −𝐷𝜌 + 𝛿1𝐼 + 𝛿2𝑇. (2) 

Disease-free equilibrium of the model (2) is defined as 

𝐷𝐹𝐸 = (𝑆∗, 𝑉∗, 𝐼∗, 𝑇∗, 𝑅∗, 𝐷∗) = (
𝑏𝑁

𝛾+𝜇
,
𝛾𝑏𝑁

𝜇(𝛾+𝜇)
, 0,0,0,0) (3) 

The basic reproduction number is denoted as ℛ0, indicates how many secondary 

infections are expected to result from a single infectious case in a fully susceptible 

population (Delamater et al., 2019). This value is crucial in understanding whether a disease 

will likely die out or continue spreading within a population (Winarni et al., 2024). When 

ℛ0 is less than 1, so each infected individual is, on average, passing the disease to fewer than 

one person, suggesting that the outbreak will eventually fade. On the other hand, if ℛ0 is 

greater than 1, the infection is likely to spread, as each case leads to more than one new 
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infection  (Delamater et al., 2019). We derive the basic reproduction number of the model 

(2) below. 

ℛ0 =
𝑏(𝛾𝑝 + 𝜇)(𝛽1𝜌𝐵 + 𝛽2𝛿1𝐵 + 𝜎𝛽2𝛿2)

𝜇𝜌𝐴𝐵(𝛾 + 𝜇)
 

The disease-free equilibrium point (𝐸0)  is locally stable when the basic reproduction 

number ℛ0 is less than 1. Otherwise, it becomes unstable. Additionally, when the endemic 

equilibrium 𝐸1 exists and ℛ0 > 1, it is locally stable (Brauer et al., 2019). Figure 3. shows 

the sensitivity of ℛ0 influenced by each parameter. Parameters 𝑏, 𝑝, 𝛽1, 𝛽2, 𝛿1, and 𝛿2 have a 

positive influence on ℛ0. This means that the larger the parameter value, the larger the value 

of ℛ0. Natural birth rate (𝑏) and the rate of contact of deceased humans (𝛽2) have a much 

greater impact on the faster spread of the disease compared to the rate of contact of infectious 

humans (𝛽1) and the death rate of the quarantined individual due to EVD (𝛿2). 

The larger the values of the parameters 𝛾, 𝜇, 𝜌, 𝜎, 𝛼1, and 𝛼2, the smaller the value of 

ℛ0. Although the rate of treatment of the infectious (𝜎) and the recovery rate of treatment 

individual (𝛼2) did not have a significant impact. The rate of disposal of dead bodies (𝜌) is 

highly sensitive to a decrease in the spread of EVD. It would be more effective to reduce the 

spread of EVD by providing vaccination compared to treating infected individuals.  

 

Figure 3. The Sensitivity of Parameters to 𝓡𝟎 

 

We provide an optimal control model based on these dynamics involving an objective 

function, adjoint equations, and optimization criteria. To perform the simulation, we apply 

the parameter values listed in Table 1. The resulting numerical analysis illustrates the 

population dynamics under the influence of vaccination as a control strategy. 
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Table 1. The Parameter Values of the Model 

Parameter  Interpretations Value 

𝑁 Number of population 1000 

𝑏 Natural birth rate 1
(70 × 52)⁄  

𝜇 Natural death rate 1
(70 × 52)⁄  

𝛾 Vaccination rate 0.15 

𝛽1 The rate of contact of an infectious human 0.67 

𝛽2 The rate of contact of deceased humans 0.64 

𝑝 The percentage of vaccines that cannot protect 

humans 

0.002 

𝛿1 The death rate of a non-quarantined individual 

due to EVD 

0.75 

𝛿2 The death rate of a quarantined individual due 

to EVD 

0.3 

𝛼1 The recovery rate of the nontreatment 

individual 

0.33 

𝛼2 The recovery rate of the treatment individual 0.8 

𝜎 The rate of treatment of the infectious  0.019 
𝜌 The rate of disposal of dead bodies 0.0009 

 

Optimal Control Analysis  

In this section, we formulate the model's objective function (2). The objective 

function depends on three state variables (infectious (𝐼), treated (𝑇), recovered (𝑅), and 

deceased (𝐷)) and vaccination (𝛾) as control variables. This function represents the 

combined cost of managing the infected population and implementing vaccination 

interventions. Given that the relationship between the number of infections and vaccination 

efforts is nonlinear, we use a quadratic formulation for both state and control variables. 

Specifically, the terms 𝜔3𝐼
2 and 𝜔4𝑇

2 quantify the costs related to infection and treatment. 

Respectively, 𝜙𝛾2 captures the cost associated with vaccination, where 𝜙 denotes the 

weighting factor. The optimal control strategies are then derived by minimizing the 

constructed objective function. 

𝐽(𝛾) = ∫ (𝜔3𝐼
2 +𝜔4𝑇

2 + 𝜙𝛾2)
𝑇

0
 𝑑𝑡 (4) 

Then, the Hamiltonian function 𝐻 is formed using Pontryagin's principle 

𝐻 = 𝜔3𝐼
2 +𝜔4𝑇

2 + 𝜙𝛾2 + ∑ 𝑧𝑖𝑓𝑖
6
𝑖=1  (5) 

Where function 𝑓𝑖 is the right-hand side of the model (2). The adjoint variables iz  for 𝑖 =

1, 2, . . . , 6 satisfy the following co-state system 

𝑧1
′ = −

𝜕𝐻

𝜕𝑆
= 𝑧1 (𝛾 +

(𝛽2𝐷+𝛽1𝐼)

𝑁
) − 𝑧2𝛾 − 𝑧3

(𝛽2𝐷+𝛽1𝐼)

𝑁
, 

𝑧2
′ = −

𝜕𝐻

𝜕𝑉
= 𝑧2 (

(𝛽2𝐷+𝛽1𝐼)𝑝

𝑁
+ 𝜇) − 𝑧3

(𝛽2𝐷+𝛽1𝐼)𝑝

𝑁
, 
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𝑧3
′ = −

𝜕𝐻

𝜕𝐼
= −2𝜔3𝐼 + 𝑧1

𝛽1𝑆

𝑁
+ 𝑧2

𝛽1𝑝𝑉

𝑁
− 𝑧3 (

𝛽1𝑆

𝑁
+
𝛽1𝑝𝑉

𝑁
+ 𝛿1 + 𝜎 + 𝛼1 + 𝜇) − 𝑧4𝜎 −

𝑧5𝛼1 − 𝑧6𝛿1, 

𝑧4
′ = −

𝜕𝐻

𝜕𝑇
= −2𝜔4𝑇 + 𝑧4(𝛿2 + 𝛼2 + 𝜇) − 𝑧5𝛼2 − 𝑧6𝛿2, 

𝑧5
′ = −

𝜕𝐻

𝜕𝑅
= −2𝜔5𝑅 + 𝑧5𝜇, 

𝑧6
′ = −

𝜕𝐻

𝜕𝐷
= −2𝜔6𝐷 + 𝑧1

𝛽2𝑆

𝑁
+ 𝑧2

𝛽2𝑝𝑉

𝑁
− 𝑧3

𝛽2𝑆+𝛽2𝑝𝑉

𝑁
+ 𝑧6𝜌, 

where the transversality condition 𝑧𝑖(𝑡) = 0, for 𝑖 = 1, 2, … , 6. 

To obtain the optimal control variable, we solve the partial derivative of a 

Hamiltonian function (5) concerning the control variable 𝛾∗ is equal to zero. Since the control 

variable is bounded in [0,1] for all 𝑡 ∈ 𝑇, we derive the optimal control variable below. 

𝛾∗ =

{
 
 

 
       0       , for 

𝜕𝐻

𝜕𝛾(𝑡)
< 0

𝑆(𝑧1−𝑧2)

2𝜙
, for 

𝜕𝐻

𝜕𝛾(𝑡)
= 0

      1      , for 
𝜕𝐻

𝜕𝛾(𝑡)
> 0

   

Using the initial condition 𝑥0, we solve the variable state 𝑥̇(𝑡) =
𝜕𝐻

𝜕𝑧
, where 𝑥 =

(𝑆, 𝑉, 𝐼, 𝑇, 𝑅, 𝐷) and 𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6), and the co-state system 𝑧(𝑡) = −
𝜕𝐻

𝜕𝑥
 with 

transversality conditions 𝑧1(𝑡) = 0 for 𝑖 = 1, 2, . . . , 6. We obtain the optimal control 𝛾∗ to 

minimize the cost function 𝐽(𝛾) as follows 

𝛾∗ = max {0,min {1,
𝑆(𝑧1−𝑧2)

2𝜙
 }}. (6) 

In (6), the control variable is continuous. It means vaccination is given every time. If 

vaccination is given every few years, we transform (6) into a semi-discrete function with 

optimal control of the parameter 𝛾∗ below. 

𝛾∗(𝑡) = ∑ 𝛾∗(𝑡)𝟏[𝑡𝑗,𝑡𝑗+1]0≤𝑗≤
𝑇

ℎ

  

where  𝑡𝑗 = 𝑗ℎ, 𝟏[𝑡𝑗,𝑡𝑗+1] is the function on the interval [𝑡𝑗, 𝑡𝑗+1)  and 𝛾∗(𝑡) (t) is changed 

every ℎ year. 

 

Numerical Simulation 

Numerical simulations were conducted using four vaccination timing strategies: no 

vaccination, vaccination every two, three, and four weeks. The parameter values and initial 

population conditions used in this simulation are presented in Tables 1 and 2.  
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Table 2. Initial Values of Variable 

Variable Value 

𝑁 1000 

𝑆(0) 800 

𝑉(0) 0 

𝐼(0) 150 

𝐷(0) 50 

𝑇(0) 0 

𝑅(0) 0 

 

 

Figure 4. Number of Subpopulations with Several Vaccination Strategies 

 

From Figure 4, implementing a vaccination strategy can reduce the number of 

infected individuals. The more frequently vaccination is administered, the lower the number 

of infectious individuals. Without vaccination, the infectious population initially increases 

before declining in the fifth week. Vaccination administered every four or three weeks 

produces similar outcomes, whereas a biweekly vaccination schedule yields different results. 

In this case, infectious individuals significantly decline during the first 15 weeks. Based on 

this, vaccination activities will be more effective if done every two weeks. Although the cost 
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is higher compared to vaccination every three or four weeks, the difference in the reduction 

in the number of infected individuals is quite significant. 

 

CONCLUSION 

The study concludes that it would be more effective to reduce the spread of EVD by 

providing vaccination compared to treating infected individuals. The optimal control to 

minimize the cost function of vaccination is 𝛾∗ = max {0,min {1,
𝑆(𝑧1−𝑧2)

2𝜙
 }}. Implementing 

vaccination can reduce the number of infected individuals in 15 weeks. More frequent 

vaccination schedules lead to a further decline in EVD cases. However, the improvements 

are insignificant between vaccinations every three and four weeks. Among the tested 

intervals, administering vaccination every two weeks proved to be the most effective. This 

strategy can minimize the infection rate and reduce the overall cost of immunization efforts. 

Based on the outcomes of this study, the model can be further extended to incorporate more 

diverse vaccination timing scenarios and to consider additional parameters that may 

significantly influence the system’s outcomes.  
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