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ABSTRACT

Stunting is a child who has a height that is shorter than the age standard. One of the main indicators of
stunting is a height that is lower than the standard for toddlers. Stunting in Indonesia is of great concern
due to the high prevalence of stunting. Stunting children are at risk of impaired cognitive development,
which will result in the development of human resources. This study aims to develop a classification
model to detect stunted toddlers based on height using the Bayesian binary quantile regression method
with LASSO (Least Absolute Shrinkage and Selection Operator). This method was chosen because of
its ability to handle multicollinearity and variable selection problems automatically, as well as provide
better estimates on non-normally distributed data. The data used in this study includes five independent
variables such as age, weight at birth, gender, how to measure height and nutritional status. The results
showed that independent variables that significantly affect the height of stunting toddlers can be a
concern to reduce the problem of stunting in Indonesia. The results of model show that variable age,
weight at birth, and nutritional status have a significant influence to classification of stunting toddler
height. Indicator of model goodness is seen from the quantile that has the smallest MSE value. The
model that has the smallest MSE is in quantile 0.25 with an MSE value of 0.1622.
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PRELIMINARY

Stunting is a condition of impaired growth in children characterized by shorter height
than their age standard (Leroy & Frongillo, 2019). Based on data from the World Health
Organization (WHO), stunting is a serious nutritional problem in many countries, including
Indonesia. This condition can affect children's physical and cognitive development and
contribute to the increased risk of infant and child mortality (Mustakim et al., 2022).
According to data from Indonesia's Central Bureau of Statistics (BPS) Sumatra Barat, the
prevalence of stunting in Indonesia is still quite high despite various efforts to tackle it.
Statistical modelling is an effective tool for analyzing the factors that influence the height
growth of stunted children. Based on the data that has been obtained, West Sumatra Province
still has a stunting proportion of 27.47%; this is still close to the value of Indonesia's stunting
proportion, which is 27.67% (Yasril & Sari, 2022).
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In the cases of stunting of toddlers in West Sumatra, the factors that affect stunting include
the age of the baby when measured after the age of 2 years (Vitaloka et al., 2019). A part from
that, the height gain of stunted toddlers is strongly influenced by the nutritional intake
obtained by children (Kang et al., 2018)(Ariati et al., 2018). Stunting toddlers are measured
standing or recumbent (Wilson et al., 2011). Not only that, one of the studies conducted said
that gender and weight also affect the classification of stunting toddlers (Huriah & Nurjannah,
2020). The factors assumed to influence height classification can be modelled with regression
analysis.

Regression analysis aims to see the influence between the dependent variable and one
or more the independent variable (Harianti Hasibuan et al., 2022)(Sholih et al., 2024)(Wizsa
& Rahmi, 2025). However, data in the field often violates the assumption of normality; one of
the models for data that violates the assumption of normality can be overcome with quantile
regression (Yanuar et al., 2016)(Hasibuan et al., 2025).

Quantile regression is regression analysis used to estimate the relationship between
independent variables and specific quantiles (percentiles) of the dependent variable’s
distribution, rather than just the mean (as in ordinary least squares regression) (Yanuar et al.,
2020),(Hasibuan, et al., 2024). A quantile is a value that divides a probability distribution or a
set of data into intervals with equal probabilities. In other words, it’s a cutoff point below
which a certain proportion of the data falls.

One approach that is gaining popularity in this research is binary quantile regression,
which can handle non-normal data distribution and provide more robust estimates compared to
conventional linear regression. Binary quantile regression allows us to model the relationship
between the independent and response variables in different quantiles with response binary
(dichotomous) (Benoit & Van den Poel, 2012).

In addition, the binary quantile regression approach can be strengthened by using
Bayesian methods, which allow for handling uncertainty in the model. The Bayesian method is
an approach in statistics used to update or adjust our beliefs (or estimates) of an event based on
new data or information obtained (Hasibuan et al., 2025). Bayesian method is considered good
for estimating parameters because the parameters obtained are considered as random variables
that have a certain distribution pattern. This led to the development of a study combining binary
quantile regression with the Bayes method, which is considered good at modeling both small
and large samples (Benoit et al., 2013).

Bayesian binary quantile regression is a method to model the probability of a binary

event, at a given quantile level, while incorporating prior information and updating it based on
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new data with a Bayesian approach. The Bayesian binary quantile regression (BBQR) method

provides advantages in terms of flexibility and robustness to outliers and allows the use of
data with more complex distributions (Benoit & Van den Poel, 2012). Further research was
developed by Rahim (Alhamzawi et al., 2012) who shrank the parameter value so that there
was no overfitting that was too large with Least Absolute Shrinkage and Selection Operator
(LASSO). This approach can also provide more reliable results in the context of limited or
imperfect data. LASSO is used as a regulation parameter in order to robust the obtained
parameters used in Bayesian Quantile Regression (Yanuar et al., 2023)(Benoit & Van den
Poel, 2012).

Children's height is one of the main indicators in monitoring the nutritional status and
health of children, especially in toddlers. Optimal growth is strongly influenced by various
factors, including adequate nutritional intake, environmental factors, and good health care.
One of the main challenges in addressing stunting is the inability to accurately predict and
measure the factors that influence growth. The application of Bayesian binary quantile
regression with LASSO in modelling the classification of height gain in stunted toddlers can
provide new insights into determining more targeted intervention strategies (Ma et al., 2023).
This study aims to develop a model that can predict the factors that affect the height growth
of stunted toddlers, with a focus on the use of Bayesian binary quantile Regression
(BBQR) and Bayesian binary quantile regression (BBLQR) techniques are expected to
provide a more comprehensive understanding of the growth dynamics of stunted toddlers.
This study aims to compare and build a classification model of height gain in stunting toddlers
using Bayesian binary quantile regression (BBQR) and (BBLQR). Hopefully, the results of
this study can provide a deeper understanding of the factors that influence height growth in
stunted toddlers and provide more effective policy recommendations in efforts to overcome

stunting in Indonesia.

MODELING PROCEDURE

Quantile Regression

Quantile regression is a statistical technique used to analyze the relationship between the
independent variable (predictor) and the dependent variable (response) at various quantiles
(percentiles) of the dependent variable distribution rather than just at the mean (as is done in
ordinary linear regression) (Hasibuan et al., 2024). This method provides a complete picture
of the relationship between variables than ordinary linear regression, which only focuses on
the mean or centre of the data distribution. Quantile regression is appropriate when data is not

normally distributed ha, has a highly skewed distribution, or has significant outliers. The
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quantile regression equation can be written as (Koenker & Bassett Jr, 1978):

Q:(Y|X) = XB(x) 1)
Where:

Q.(Y[X) is quantile T from dependent variable Y given X.

B () is a vector of parameter quantile regression in quantile=z, which is the quantile used.
The estimated value of the parameters in the quantile regression equation B, is obtained by

minimizing the following equation (Davino et al., 2013):

> i —xiBo). )
i=1

With p,(w) = u(r — I(u < 0))is the loss function with the equation [10]:
©)

p(e) = s(rl(s =0)—-(1—-1)I(e < O)).
It is an indicator function, which has a value of 1 when I (.)it is true and 0 otherwise. This
aims to reduce the prediction error in the higher quantiles (penalizing the error in the upper

quantiles more) and vice versa in the lower quantiles

Bayesian Binary Quantile Regression
Binary quantile regression (BQR) was introduced by Benoit et al. (Benoit & Van den Poel,
2012). BQR model for =t quantile and n samples and k predictor for i = 1,2, ..., n is written as

(Yu et al., 2003):
Yi = Por + BreXip + BaeXip + o+ + PreXi + €. 4)

yi* - x;ﬁr + &
®)
Where x = (x;q, %42, .-, x3)'1S the independent variable for the samplei = 1,2, ...,n, B(1)
the parameter vector, and £ as the residual vector andy; is the observed response of it the
subject determined by the latent unobserved responsey; (Benoit et al., 2013).

{ 1,ify; =0 (6)
Yi = 0, otherwise.
Combining the quantile regression technique with the binary selection regression model, the

following binary quantile regression models can be obtained (Benoit et al., 2013):
Qe (i lxp) = xiB- + &, )

WhereQ, (y; |x;) = inf {(y;|F(y;|x;) = 7)} conditional quantileg, is a parameter of ther "

quantile. We use transformations that can be performed:
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®)
Qe ilxi) = Qe(h(y/ |x:) = h(Qr (¥ |x1) = h(x{Bo).

Withh(x{B,) = I(x{B. > 0), supposep, () = ==

B- is determined by the following formula (Yanuar, Yozza, et al., 2023):

is a test function. The parameter

- , ©
> ool — hxiB.).
i=1

Where h(x;B.) = I(x;B.>0) is the indicator variable equal to 1 if I(xjB,)it is true and
zero otherwise. In Bayesian Quantile Regression, the Asymmetric Laplace Distribution is
used to model the error term in the regression model. The key idea is that the ALD
can model the Asymmetry of the data is important when predicting different quantiles of the
dependent variable (Yu & Moyeed, 2001). When performing quantile regression, we are
trying to find the regression coefficients that minimize a weighted sum of absolute deviations.
In the case of the ALD, this corresponds to the quantile loss function, where the loss depends
on the quantile of interest. ALD is used in the process of forming a random variable € is ALD
distributed with a likelihood density functionf (&):

fr(e) = (1 — D)exp (—pL(e)). (10)

witho < ¢ < 1 and p.(e)being the loss functione, the error of the estimation, and I(s)the

indicator function.

Suppose (Z~exp (1)) andU~N (0,1). With & is an ALD distributed random variable then &
can be expressed in the following equation:

£=0z+puyz.
(11)
(ll:i; and p? = (1—21)1 (Yu & Moyeed, 2001). Parameter g estimation for the 7"
quantile in the Bayesian quantile regression is formulated in equation (12) is: (Benoit et al.,
2013):

Whereé —

n f_(x! v:))2
L(y;|B.o,v) = (H-_l(avi)_%) (exp (_ i — (B +0vy)) )) (12)

2p2ov;
With ¢ = othe scale parameter and danv; = oz; spreading exp (o) distribution. Based on
equation (14), the full conditional distribution J;is truncated normal distribution:
® N(x:,ﬁ‘r + 9'1?1-,1)20"1?1-)1()1; = O)rlfyl: =1
yi |ﬁ: 0-: v = r ) 2 * . o .
N(xiB: + 6v;,p=av)I(y; > 0),ify; =0 (13)

The prior distribution used in this study areg,~N (b, By),

v;~exp (o) and o~IG(a, b). While, posterior distribution for each prior are as follows:
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(Bl,o,v,y; )~N[(Bg* + x;(p?ov) *x)) " (Bytbo + x;(p*ov) 1x{) 1y,
X; (pzav)_lﬂvi),(Bai + x;(p?ov)1x)) 1]

92

ilB, 0, ¥ )~GIG(, (@“p Oizxibe) ),(; +-2)), (14)

pio

(clB, v, y; )~ IG(a+ =, (b+ X 1:91+2?1+(M ))_

2pie

Bayesian Binary LASSO Quantile Regression

In Binary Bayesian Quantile Regression, we are interested in modelling the conditional
quantiles of a binary response variable dichotomous with a Bayesian approach. The method
combines quantile regression, which focuses on estimating specific quantiles of the response
distribution, with the Bayesian framework to incorporate uncertainty in the model's
parameters. The key components and steps involved in estimating the parameters in this
setting (Benoit & Van den Poel, 2012),(Benoit et al., 2013):

BLASSO:%EEI{}E;LI p(y; — x:ﬁ) + AZ?:llﬁj | (15)

Where 1 is a non-negative variable penalty coefficient. The prior distribution B, n2,{,0,5,v,8
used for n th sample with k predictor according to for used in Bayesian LASSO binary

quantile regression is:

2 2 2
F(Blnt.s;) = 1_[ [, e oo s
, (16)
fm216,¢) = F(ﬁ)nz(a U exp(—(n?),

flé) =1,
f(o) = 6% exp(—ay0),

2 T]2
f(s5n?) = = em(—;sj),

f (v;ilo) = oexp(—v;0),
(m»°

F1n?) = “Fess

with n =01, n’~Gamma(m?{™), s=(sy,.,8:),i=12..k, v= (vg..,1,),
c>0a >0a>0 ,102>0, ¢>0,6 > 0.Based on equation (18), the joint posterior

distribution Bayesian LASSO binary quantile regression is obtained as follows:
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; 1
f(ﬁrlanqfo-!szJé\:y*)mN( i X2’ x 5)
1 n “i 1 n “i
S Tokin 2v;  s; 1=12p

f@?%B. ¢ 0,5v,68,y)~Gamma (( +kv+ E?:o EJ),
f|B.n%¢ 0,516,y )~Gamma({,n?),
f(clﬁf’ nz"o-" SJ' v" 6’ y*)NGa’?n?na(c’ “?2)1

: 2
* 1 (Oixibe 2, 62
F@ilBon?, 0,6, 0,5,0,5,y)~GCIG ((u )+ )),

prioc a pPeoc
) 1
f(silBen?v,¢,0,5,9,8,y)~GIG (5, B2n? ),

® r 2
3 " i — (Xipr +ov;
f(o-lﬁpng;v,(,S,V,é\,y*)’”GfG (a‘l';,(b‘l‘z ((yr, (x;ﬁ O-U) )‘l"l?i)

i=1 2p*v;

Data

The data used in this study are secondary data. The data was obtained directly from the Air
Dingin Health Center, Padang City. The amount of data amounted to 148 data from 2022 to
2023. The dependent variable (Y) in this study is the classification of height of stunting
toddlers based on Height-for-age Z-score (HAZ) is an indicator used to assess children's
growth status by comparing a child's height at a given age against the WHO healthy child
growth standards. Based on the literature, the independent variables that are assumed to affect
the dependent variable are age, weight at birth, gender, how to measure height, nutritional
status. The description of the research variables can be seen in the following Table below:

Tablel. Descriptive Statistics of data category

Variable Category Frequency Percentage
Height Gain Short 122 82.43%
Very Short 26 17.57%
Gender Male 91 61.48%
Female 57 38.52%
How to measure Stand up 106 71.62%
height
Recumbent 42 28.38%
Nutrition Status Malnutrition 5 3.37%
Undernutrition 16 10.81%
Normal Nutrition 109 73.64%
Overnutrition 5 3.37%
At risk of 13 8.78%

overnutrition
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Data Analysis

a. Creating statistic descriptive data.
b. Analysis Bayesian Binary LASSO Quantile Regression (BBLQR)

1.

2
3
4.
5

Prior Distribution Determination, likelihood function and posterior distribution
parameter.

Determine the posterior mean of each parameter.

Estimating model parameters and significance tests in each quantile.

Estimating the value of the width of the 95% confidence interval in each quantile.

. Calculating the Mean Square Error (MSE) value in each gquantile.

c. Comparing the estimation results, 95% confidence interval width, MSE value of each

quantile between the two methods.

d. Selecting the best model and checking the trace plot and density plot.

e. Conclusions and interpretations on the selected model.

RESULT AND DISCUSSION

This stage, parameter estimation will be carried out using Software R with the

Gibbs  Sampling approach. The quantile chosen in this study is the quantile

7 = 0.05;0.25;0,55;0.75;0.95, The selection of quantiles in research is usually based on the

purpose of the data analysis and the characteristics of the data distribution. Quantiles divide the

data into

equal parts and are used to understand the distribution of the data. The results of

parameter estimation using the BBQR and BBLQR methods can be presented in the Table

below:

Tabel 2. Estimated value of g for each quantile —  using BBQR and BBLQR

Independent Variables BBOR BBLOR
Parameter (B) Width Parameter(g) ~ Width
Cl 95% Cl 95%
t=0.05
Intercept -5.0319 5.7095 -0.0220 0.1480
X, (Age) 1.2234 1.3475 0.0107 0.0516
X,(weight at birth) -0.0004 0.0042 -0.0007 0.0003
X3(Gender) -0.4602 2.4955 -0.0021 0.0745
X, (how to  measure
height) -0.7775 4.0454 -0.0015 0.1110
Xs(nutritional status) 0.0736* 1.4374 -0.0037* 0.3540
7=0.25
Intercept -0.3043 2.7222 0.5090 1.0500
X;(Age) 0.5017* 0.6679 0.0388* 0.1140
X,(weight at birth) -0.0001* 0.0017 -0.0001* 0.0004
X3(Gender) -0.1994 1.1414 -0.0111 0.1760

X, (how to  measure
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height) -0.3795 1.7478 0.3805 0.8860
Xs(nutritional status) -0.1194* 0.6613 -0.0310* 0.1670
T=0.55
Intercept 1.0900 2.9033 0.9990 0.1180
X;(Age) 0.2180 0.6189 0.0013 0.0166
X,(weight at birth) 0.0004* 0.0017 -0.0041* 0.0002
X3(Gender) -0.1070 1.2064 0.0003 0.3250
X, (how to  measure
height) -0.1380 1.8105 0.0007 0.0562
Xs(nutritional status) -0.1440* 0.7782 -0.0017* 0.0378
t=0.75
Intercept 1.7913 3.6718 1.0000 0.0696
X;(Age) 0.1772 0.7479 0.0070 0.0107
X,(weight at birth) 0.0001* 0.0023 0.00006* 0.0001
X5(Gender) -0.0566 1.4677 -0.0003 0.0216
X, (how to measure
height) -0.0882 2.2695 -0.0018 0.3590
Xs(nutritional status) -0.1166* 1.0092 -0.00002* 0.0222
1=0.95
Intercept 4.1742 6.6331 0.0101 0.0035
X, (Age) 0.17806 1.4182 0.0003 0.0060
X,(weight at birth) 0.0004* 0.0047 0.0001* 0.0008
X3(Gender) 0.0117 2.8245 -0.0004 0.0170
X4(how to  measure
height) -0.080 4.2424 -0.0026 0.0024
X5 (nutritional status) 0.0114* 1.8904 0.0003* 0.0090
*significantly
a=0,05.

Table 2 shows the variables of age, weight at birth and nutritional status are significant at the
quantile in both methods, and variable age and nutritional status significant in all quantile in
both methods because the confidence interval does not contain zero. Variable of gender, how to
measure height not significantly in all quantile. MSE is used for the indicator of model
goodness from the comparison of the BBQR and BBLQR methods. MSE values can be
presented in Table 3 below:

Table 3. MSE Value BBOQR and BBLQR

Quantile MSE
BBOR BBLOR
0,05 10.5670 0.8353
0,25 0.60516 0.1622
0,55 0.26533 0.1730
0,75 1.24016 0.1758
0,95 15.2410 0.1785

Based on the Table 3 above, it can be seen that the quantile that has the smallest MSE value is
quantile 0.25. With these results, the model for the classification of stunting toddler height is as

follows:
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Logit(p;) = 0.5090 + 0.0388X; — 0.0001X, — 0.0111X, 4+ 0.3805X, — 0.0310X;

Based equation above can be interpreted by looking at odds ratio values in Table 4.
Table 4. Odd Ratio at Quantile T = 0.25

Independent Estimated Odd Ratio
Variables Mean (B)

X1(Age) 0.5090  1.6637
X, (weight at 0.0388  1.0396
birth)

X5 (Gender) -0.0001  0.9999
X, (how to

measure height) -0.0111 0.9889
X5 (nutritional

status) 0.3805  1.4631

Based on Table 4 above, the stunting height classification model can be interpreted. For every
additional year of child age, the chance of stunting is 50%. If the toddler's weight increases by
1 kg, then the chance of experiencing stunting is 3%. Furthermore, to see the convergence of
each parameter in the 0.25 quantile, trace plots and density plots were used. It can be seen that

the parameters have converged and stabilized around the mean. More clearly related to this
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convergence can be seen in the figure below:
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Figure 1. Trace plot and Density Plot for parameters in quantile 0.25
In Figure 1, the trace plot shows that the parameter values generated by the Markov Chain
Monte Carlo (MCMC) algorithm at each iteration have converged or stabilized. It can be seen
that the parameter value is already at the limit of the 95% confidence interval, and the trace plot
shows a flat random movement. Density plot shows the posterior distribution of the parameters
after MCMC iteration. It is like a smoothed histogram to estimate the probability distribution.
Density plot shows the posterior distribution of the regression parameters in each quantile is
very important because in quantile regression the errot distribution is not assumed to be normal
like ordinary regression. From the results, the parameters are close to the normal distribution or

have stabilized.

CONCLUSION

Based on the results of data analysis, this study can be concluded that the classification
model of stunting toddler height obtained the best model in quantile 0.25 seen from the
smallest MSE value of all quantiles. Independent variables that have a significant influence are
age, nutritional status. These results can be used as input for related agencies and add insight
related to the methods used for research needs. This research has limitations related to the fact
that it is still vulnerable to overfitting, so that parameter regulation is needed, as well as testing
the accuracy of model parameters with more robust methods.
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