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ABSTRACT 

In this paper, there is a section that identifies the aim of the research and makes it possible to suggest 

exploring the metric dimension and partition dimension of the amalgamation of complete graphs, 

which we would denote as 𝐴𝑚𝑎𝑙(𝐾𝑛, 𝑣0)𝑡. There are three steps conducted to achieve the research 

goals in this paper. To begin with, compute the lower bound of the metric dimension and the partition 

dimension of the graph 𝐴𝑚𝑎𝑙(𝐾𝑛, 𝑣0)𝑡. The second step is to find the upper bounds of the metric 

dimension and partition dimension of the graph 𝐴𝑚𝑎𝑙(𝐾𝑛, 𝑣0)𝑡 by demonstrating that the 

representation of any vertex in 𝐴𝑚𝑎𝑙(𝐾𝑛, 𝑣0)𝑡 is distinct. Finally, the exact values of the metric 

dimension and partition dimension of the graph 𝐴𝑚𝑎𝑙(𝐾𝑛, 𝑣0)𝑡 are found if the lower and upper 

bounds are determined.  The exact value of the metric dimension of the graph 𝐴𝑚𝑎𝑙(𝐾𝑛, 𝑣0)𝑡 is 

denoted as 𝑑𝑖𝑚(𝐴𝑚𝑎𝑙(𝐾𝑛, 𝑣0)𝑡), while the exact value of the partition dimension is denoted as 

𝑝𝑑(𝐴𝑚𝑎𝑙(𝐾𝑛, 𝑣0)𝑡). In this research, it is found that 𝑑𝑖𝑚(𝐴𝑚𝑎𝑙(𝐾𝑛, 𝑣0)𝑡) = (𝑛 − 2)𝑡 for 𝑛, 𝑡 ∈ ℕ 

with 𝑛 ≥ 3 and 𝑡 ≥ 2. It is also found that 𝑝𝑑(𝐴𝑚𝑎𝑙(𝐾𝑛, 𝑣0)𝑡) = 𝑛 for 2 ≤ 𝑡 ≤ 𝐶𝑛−1
𝑛 . 
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PRELIMINARY 

Mathematics is a branch of science that plays a significant role in helping to solve 

various problems. One of the fields that can be developed within mathematics is graph 

theory. Graph theory is a branch of mathematics that aids in solving problems in a more 

systematic way. The representation of a graph depicts a discrete object as a vertex and the 

connections between these objects as edges (Irene et al., 2024). This allows for easier 

visualization and analysis of relationships between objects. 

Graph theory is widely applied in modeling real-world networks, including 

transportation systems, communication networks, and social structures. In transportation 

networks, each location can be represented as a vertex, while roads act as edges connecting 

them. Understanding the structure of these networks is essential for route optimization and 

network efficiency (Biswal, 2015). One method for analyzing network properties is through 

metric dimension, which provides a measure of uniqueness in identifying locations within a 
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graph. This study expands on previous research by exploring how the metric and partition 

dimensions change when complete graphs are amalgamated at a single vertex. 

Historically, one of the earliest cases that introduced the use of graphs was the 

problem of the Königsberg bridges in 1736. The Königsberg bridge problem posed the 

question of whether it was possible for someone to cross the seven bridges connecting four 

landmasses exactly once and return to the starting point (Aziz, 2021). In the same year, 

Leonhard Euler, a Swiss mathematician, successfully provided a solution to this problem 

with a simple proof by modeling it as a graph. 

 “ Metric dimension is a term which appears primarily in the works of graph theory. 

When determining the metric dimension of a given graph, certain concepts are applied. First 

is the term of the distance between the two vertices of the graph, and the second is the concept 

of a resolving set. Harary & Melter (1976) were the first to conduct research on the invention 

of metric dimension mathematic concepts.” 

Let 𝐻 = (𝑉, 𝐸) be a connected graph. For every pair of vertices 𝑢, 𝑣 ∈ 𝑉(𝐻) and an 

ordered set 𝑊 ⊂ 𝑉(𝐻), with 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑘}, the representation of a vertex 𝑣 with 

respect to 𝑊, denoted by 𝑟(𝑣|𝑊), is a 𝑘-vektor 

𝑟(𝑣|𝑊) = (𝑑(𝑣, 𝑤1), 𝑑(𝑣, 𝑤2), . . . , 𝑑(𝑣, 𝑤𝑘)). 

 If there exists 𝑤𝑖 ∈ 𝑊 such that 𝑑(𝑢,𝑤𝑖) is not equal to 𝑑(𝑣,𝑤𝑖), it must follow that 

𝑟(𝑢|𝑊) is different from 𝑟(𝑣|𝑊). If all vertices  𝑢, 𝑣 ∈ 𝑉(𝐻) are represented by 𝑊 such 

that there exists 𝑤𝑖 ∈ 𝑊 for which the representation of 𝑢 and 𝑣 with respect to 𝑊 is not the 

same, then 𝑊 is termed a resolving set for the graph 𝐻. A resolving set with the minimum 

number of elements is referred to as a basis of 𝐻. The number of elements of the minimum 

such resolving set is referred to as the metric dimension of the graph 𝐻 and is denoted 

𝑑𝑖𝑚(𝐻) (Chartrand, Eroh, et al., 2000). 

 Partition dimension is an extension of metric dimension. A partition is the division 

of a vertex into several groups or classes. Let 𝐻 be a connected graph. For any vertices 𝑢, 𝑣 ∈

𝑉(𝐻) and 𝑆 ⊆ 𝑉(𝐻), suppose 𝑉(𝐻) is partitioned into 𝑘 disjoint subsets 𝑆1, 𝑆2, … , 𝑆𝑘. Define 

𝛱 = {𝑆1, 𝑆2, … , 𝑆𝑘} where 𝑆𝑖 ⊆ 𝑉(𝐻) for 𝑖 = 1, 2, … , 𝑘 as the set of 𝑘-partitions. The 

representation of 𝑣 ∈ 𝑉(𝐻) according to 𝛱 is defined as 

𝑟(𝑣|𝛱) = (𝑑(𝑣, 𝑆1), 𝑑(𝑣, 𝑆2), . . . , 𝑑(𝑣, 𝑆𝑘)). 

 If, whenever distinct vertices 𝑢, 𝑣 ∈ 𝑉(𝐻), the representations according to 𝑆𝑖 ∈  𝛱 

are different, this leads us to affirm that 𝛱 serves as a resolving partition of the graph 𝐻. The 

number of elements of the minimum such resolving partition is referred to as the partition 
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dimension of the graph 𝐻 and is denoted 𝑝𝑑(𝐻) (Chartrand, Salehi, et al., 2000).  An 

important theorem regarding the partition dimension of graphs can be found in Theorem 1 

 Theorem 1 (Chartrand, Salehi, et al., 2000). If 𝐺 is a nontrivial connected graph, 

then 

𝑝𝑑(𝐺) = dim(𝐺) + 1.” 

“ The advancement of knowledge and technology has led to several discoveries related 

to the determination of metric dimension and partition dimension for various graphs. Among 

them, Utomo & Dewi (2018) determined the metric dimension of a graph consisting of 𝑛 

complete graphs 𝐾𝑚 amalgamated with a complete graph 𝐾𝑛, denoted by the graph 

𝐴𝑚𝑎𝑙{𝑛𝐾𝑚|𝑛 ≥ 4,𝑚 ≥ 4}. Additionally, Welyyanti et al. (2023) determined the metric 

dimension of the amalgamation of Theta graphs. Furthermore, Mellany et al. (2023) found 

the metric dimension of palm graphs. Angraini et al. (2023) determined the metric dimension 

and partition dimension of the triangular ladder graph 𝑇𝑅𝑛 for 𝑛 = 2,3. Putri et al. (2019) 

determined the metric dimension of the buckminsterfullerene graph. Wijaya (2022) 

discovered the metric dimension of the graph resulting from identification. Rahmadani & 

Syafruddin (2015) successfully determined the metric dimension of the barbell graph B2n, 

where n≥3. Marinda & Syafruddin (2015) found the metric dimension of the dragon graph 

Tn,m.” 

“ Liza (2018) determined the partition dimension of the friendship graph. Daming et 

al. (2020) determined the partition dimension of the graph resulting from the amalgamation 

of cycles. Haspika et al. (2023) determined the partition dimension of grid graphs. Haryeni 

et al. (2017) determined the partition dimension of a disconnected graph. Saifudin (2016) 

determined the metric dimension and the partition dimension of the family of ladder graphs.” 

 Let 𝐺𝑖 be a connected simple graph with 𝑖 ∈  { 1,2,3, . . . , 𝑡} where the vertex set 

𝑉(𝐺𝑖) = { 𝑣𝑖,𝑗|1 ≤  𝑗 ≤  𝑘𝑖} and |𝑉(𝐺𝑖)| = 𝑘𝑖, for 𝑘𝑖 ≥ 2. Next, consider a finite collection 

of graphs (𝐺1, 𝐺2, . . . , 𝐺𝑡) for 𝑡 ≥ 2, where any 𝐺𝑖 has a vertex 𝑣𝑖 ∈  𝑉(𝐺𝑖) referred to as the 

terminal vertex. The operation of amalgamating these graphs is denoted by 𝑚𝑎𝑙(𝐺𝑖, 𝑣)𝑡, 

which results in a graph derived from 𝐺1, 𝐺2, . . . , 𝐺𝑡 that share the terminal vertex 𝑣𝑖, and this 

vertex becomes a new vertex called 𝑣 (Iswadi et al., 2010). 

This paper will discuss how to determine the metric dimension and partition 

dimension of the amalgamation of complete graphs. For an integer 𝑡 ≥ 2, let (𝐺1, 𝐺2, . . . , 𝐺𝑡) 

be a set of connected, finite, and simple graphs where any 𝐺𝑖 has a fixed vertex 𝑣0 (the 

central vertex). The amalgamation (𝐺1, 𝐺2, . . . , 𝐺𝑡), denoted by 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡, is the graph 
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obtained by identifying the terminal vertices of any graph 𝐺𝑖 (Bustan et al., 2023). Next, the 

graph 𝐴𝑚𝑎𝑙(𝐾𝑛, 𝑣0)𝑡 would be presented, where 𝐺 ≈ 𝐾𝑛 is the complete graph of order 𝑛. 

The definitions of the vertex set and edge set of 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡 are as follows. 

𝑉(𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡) = {𝑣0}  ∪ {𝑣𝑖,𝑗|𝑖 ∈ [1, 𝑡], 𝑗 ∈ [1, 𝑛 − 1]}. 

𝐸(𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡) = {𝑣0𝑣𝑖,𝑗|𝑖 ∈ [1, 𝑡], 𝑗 ∈ [1, 𝑛 − 1]} ∪ {𝑣𝑖,𝑗𝑣𝑖,𝑘| 𝑖 ∈ [1, 𝑡],  

   𝑗 ∈ [1, 𝑛 − 1], 𝑘 ∈ [1, 𝑛 − 1]}. 

 

The graph 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡 is shown in Figure 1. 

 

Figure 1. Graph 𝑨𝒎𝒂𝒍(𝑲𝒏, 𝒗𝟎)𝒕 

 Figure 1 will be the object of this paper and will discuss how to determine the metric 

dimension and partition dimension of the amalgamation of complete graphs, which we 

would denote as graph 𝐴𝑚𝑎𝑙(𝐾𝑛, 𝑣0)𝑡. 

 

METHODS 

The steps involved in this research can be summarized as follows: 

1. Determining the metric dimension of the graph 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡:“ 

● Find the lower bound of the metric dimension of the graph 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡. If this 

lower bound does not satisfy the condition for metric dimension, additional 

resolving sets are added to ensure that the condition for determining the lower 

bound. 
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● Find the upper bound of the metric dimension of the graph 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡 

by demonstrating that the representation of any vertex in the graph 𝐺 must be 

different. 

● The exact value of the metric dimension of the graph 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡 is 

determined if the lower bound of the metric dimension is 𝑑𝑖𝑚(𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡) ≥

𝑎 and the upper bound is 𝑑𝑖𝑚(𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡) ≤ 𝑎. In this case, the exact metric 

dimension of 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡 is 𝑑𝑖𝑚(𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡) = 𝑎.  

 

 

Figure 2. Flowchart of metric dimension 

 

2. Determining the partition dimension of the graph 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡: “ 

● Find the lower bound of the partition dimension of the graph 𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡. If 

this lower bound does not satisfy the condition for partition dimension, 

additional resolving partitions are added to ensure that the condition for 

determining the lower bound. 
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● Find the upper bound of the partition dimension of the graph 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡 by 

demonstrating that the representation of any vertex in the graph 𝐺 must be 

different. 

● The exact value of the partition dimension of the graph 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡 is 

determined if the lower bound of the partition dimension is 

𝑝𝑑(𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡) ≥ 𝑎 and the upper bound is 𝑝𝑑(𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡) ≤ 𝑎. In this 

case, the exact partition dimension of 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡 is 𝑝𝑑(𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡) =

𝑎.” 

 
Figure 3. Flowchart of partition dimension 

 

RESULT AND DISCUSSION 

A. Metric Dimension of Amalgamation of Complete Graphs 

“ Theorem 2 would discuss the metric dimension of the graph 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡 for 𝑛, 𝑡 ∈

ℕ with 𝑛 ≥ 3 and 𝑡 ≥ 2.” 

“ Theorem 2. Let 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡 be the amalgamation of complete graphs 𝐾𝑛, for 

𝑛, 𝑡 ∈ ℕ with 𝑛 ≥ 3 and 𝑡 ≥ 2. Then 

𝑑𝑖𝑚(𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡) = (𝑛 − 2)𝑡.” 
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Proof. 

Let 𝐺 be 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡 with the vertex set and edge set given in the preliminary. 

Assume that 𝑑𝑖𝑚(𝐺) = (𝑛 − 2)𝑡 − 1. Consider 𝑊 = {𝑣1,𝑘|𝑘 ∈ [3, 𝑛 − 1]} ∪ {𝑣𝑖,𝑗|𝑖 ∈

[2, 𝑡], 𝑗 ∈ [2, 𝑛 − 1]}. It follows that there would be two vertices in the first 𝐾𝑛 that are not 

element of the resolving set, specifically the vertices 𝑣1,1 and 𝑣1,2. Consequently, these two 

vertices would not provide different representations because they have the same distance to 

𝑊. Therefore, at least 𝑛 − 2 vertices in any 𝐾𝑛 of the graph 𝐺 must be included in the 

resolving set. Hence, 𝑑𝑖𝑚(𝐺) ≥ (𝑛 − 2)𝑡. 

 Let 𝑊 = {𝑣𝑖,𝑗|𝑖 ∈ [1, 𝑡], 𝑗 ∈ [2, 𝑛 − 1]}, where 𝑣𝑖,𝑗 ∈ 𝐺 with 𝑛 ≥ 3 and 𝑡 ≥ 2. 

Consider all the vertex representations of 𝑉(𝐺) with respect to 𝑊 as follows.  

To analyze the uniqueness of vertex identification in 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡, we present the 

vertex representations in Table 1. This table illustrates how each vertex is distinguished 

based on its distance to a selected resolving set, which is crucial in determining the metric 

dimension of the graph. 

 

“Table 1. Vertex Representations of 𝑨𝒎𝒂𝒍(𝑮𝒊, 𝒗𝟎)𝒕 

Vertex Representations 

r(v0|W) = (1,1, … ,1,1⏟      
(n−2)t

), 

r(v1,1|W) = (1,1, … ,1⏟    
n−2

, 2,2, … ,2⏟    
(t−1)(n−2)

), 

r(v1,2|W) = (0, 1,1, … ,1⏟    
n−3

, 2,2, … ,2⏟    
(t−1)(n−2)

), 

r(v1,3|W) = (1,0, 1,1, … ,1⏟    
n−4

, 2,2, … ,2⏟    
(t−1)(n−2)

), 

r(v1,4|W) = (1,1,0, 1,1, … ,1⏟    
n−5

, 2,2, … ,2⏟    
(t−1)(n−2)

), 

r(v1,j|W) = (1,1, … ,1⏟    
j−2

, 0, 1,1, … ,1⏟    
n−j−1

, 2,2, … ,2⏟    
(t−1)(n−2)

), 

r(v1,n−1|W) = (1,1, … ,1⏟    
n−3

, 0, 2,2, … ,2⏟    
(t−1)(n−2)

), 

r(v2,1|W) = (2,2, … ,2⏟    
n−2

, 1,1, … ,1⏟    
n−2

, 2,2, … ,2⏟    
(t−2)(n−2)

), 

r(v2,2|W) = (2,2, … ,2⏟    
n−2

, 0, 1,1, … ,1⏟    
n−3

, 2,2, … ,2⏟    
(t−2)(n−2)

), 

r(v2,3|W) = (2,2, … ,2⏟    
n−2

, 1,0, 1,1, … ,1⏟    
n−4

, 2,2, … ,2⏟    
(t−2)(n−2)

), 

r(v2,4|W) = (2,2, … ,2⏟    
n−2

, 1,1,0, 1,1, … ,1⏟    
n−5

, 2,2, … ,2⏟    
(t−2)(n−2)

), 

r(v2,j|W) = (2,2, … ,2⏟    
n−2

, 1,1, … ,1⏟    
j−2

, 0, 1,1, … ,1⏟    
n−j−1

, 2,2, … ,2⏟    
(t−2)(n−2)

), 
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r(v2,n−1|W) = (2,2, … ,2⏟    
n−2

, 1,1, … ,1⏟    
n−3

, 0, 2,2, … ,2⏟    
(t−2)(n−2)

), 

r(vt,1|W) = ( 2,2, … ,2⏟    
(t−1)(n−2)

, 1,1, … ,1⏟    
n−2

), 

r(vt,2|W) = ( 2,2, … ,2⏟    
(t−1)(n−2)

, 0, 1,1, … ,1⏟    
n−3

), 

r(vt,3|W) = ( 2,2, … ,2⏟    
(t−1)(n−2)

, 1,0, 1,1, … ,1⏟    
n−4

), 

r(vt,4|W) = ( 2,2, … ,2⏟    
(t−1)(n−2)

, 1,1,0, 1,1, … ,1⏟    
n−5

), 

r(vt,j|W) = ( 2,2, … ,2⏟    
(t−1)(n−2)

, 1,1, … ,1⏟    
j−2

, 0, 1,1, … ,1⏟    
n−j−1

), 

r(vt,n−1|W) = ( 2,2, … ,2⏟    
(t−1)(n−2)

, 1,1, … ,1⏟    
n−3

, 0). 

 

Table 1 presents the vertex representations in the graph 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡. The distance 

of the vertex 𝑣0 with respect to elements of 𝑊 is consistently 1. For each vertex 𝑣𝑖,𝑗 with 

𝑖 = 1,2, … , 𝑡 and 𝑗 = 1,2, … , (𝑛 − 1), its representation with respect to 𝑊 is 0 for itself, 1 

for vertices within the same 𝐾𝑛, and 2 otherwise. Consequently, each vertex 𝑣𝑖,𝑗 is uniquely 

distinguished by the placement of 0, 1, and 2 values. 

Since no two vertices share the same representation with respect to 𝑊, it follows that 

𝑊 constitutes a resolving set. Therefore, the metric dimension satisfies 𝑑𝑖𝑚(𝐺) ≤ (𝑛 − 2)𝑡, 

leading to the conclusion that the metric dimension of 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡 is 

𝑑𝑖𝑚(𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡) = (𝑛 − 2)𝑡. These findings confirm the validity of the chosen 

resolving set and provide a precise characterization of vertex distinguishability within the 

graph structure. 

∎ 

B. Partition Dimension of Amalgamation of Complete Graphs 

“ Theorem 3 would discuss the partition dimension of the graph 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡 for 

𝑛, 𝑡 ∈ ℕ with 𝑛 ≥ 3 and 𝑡 ≥ 2.” 

“ Theorem 3. Let 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡 be the amalgamation of complete graphs 𝐾𝑛, for 

𝑛, 𝑡 ∈ ℕ with 𝑛 ≥ 3 and 𝑡 ≥ 2. Then 

𝑝𝑑(𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡) = 𝑛, 𝑓𝑜𝑟 2 ≤ 𝑡 ≤ 𝐶𝑛−1
𝑛 .” 

Proof. 

Let 𝐺 be 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡 with the vertex set and edge set given in the preliminary. We 

would determine that 𝑝𝑑(𝐺) ≥ 𝑛 for 2 ≤ 𝑡 ≤ 𝐶𝑛−1
𝑛 . According to Theorem 1 in the 

preliminary, which states that 𝑝𝑑(𝐻) ≤ 𝑑𝑖𝑚(𝐻) + 1, and based on the previously obtained 

metric dimension results for the graph 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡, we have 𝑝𝑑(𝐺) ≥ 𝑛 for 2 ≤ 𝑡 ≤
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𝐶𝑛−1
𝑛 . Next, we would show that 𝑝𝑑(𝐺) ≤ 𝑛 for 2 ≤ 𝑡 ≤ 𝐶𝑛−1

𝑛 . Let 𝛱 = {𝑆1, 𝑆2, … , 𝑆𝑛} be a 

resolving partition of 𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡. The partition classes of the graph 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡 are 

shown in Figure 2. 

 

Figure 4. The partition classes of the graph 𝑨𝒎𝒂𝒍(𝑮𝒊, 𝒗𝟎)𝒕 

As illustrated in Figure 4, the vertex representations in the graph 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡 are 

determined based on their distances to elements of the resolving set 𝛱. Each row in Table 2 

corresponds to a vertex, while the columns indicate the respective distance values. These 

distances uniquely distinguish each vertex, ensuring that no two vertices share the same 

representation. The placement of values 0, 1, and 2 reflects the relative proximity of each 

vertex within the graph structure, which plays a crucial role in accurately determining its 

partition dimension. 

“Table 2. Vertex Representations of 𝑨𝒎𝒂𝒍(𝑮𝒊, 𝒗𝟎)𝒕 

Vertex Representations 

r(v0|Π) = (0, 1,1, … ,1⏟    
n−1

), r(v3,1|Π) = (0,1,2, 1,1, … ,1⏟    
n−3

), 

r(v1,1|Π) = (1,0, 1,1, … ,1⏟    
n−2

), r(v3,2|Π) = (1,0,2, 1,1, … ,1⏟    
n−3

), 

r(v1,2|Π) = (1,1,0, 1,1, … ,1⏟    
n−3

), r(v3,3|Π) = (1,1,2,0, 1,1, … ,1⏟    
n−4

), 

r(v1,3|Π) = (1,1,1,0, 1,1, … ,1⏟    
n−4

), r(v3,4|Π) = (1,1,2,1,0, 1,1, … ,1⏟    
n−5

), 

r(v1,4|Π) = (1,1,1,1,0, 1,1, … ,1⏟    
n−5

), r(v3,j|Π) = (1,1,2, 1,1, … ,1⏟    
j−3

, 0, 1,1, … ,1⏟    
n−j−1

), 

r(v1,j|Π) = (1,1, … ,1⏟    
j

, 0, 1,1, … ,1⏟    
n−j−1

), r(v3,n−1|Π) = (1,1,2, 1,1, … ,1⏟    
n−3

), 
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r(v1,n−1|Π) = (1,1, … ,1⏟    
n−1

, 0), r(vt,1|Π) = (0, 1,1, … ,1⏟    
n−2

, 2), 

r(v2,1|Π) = (0,2, 1,1, … ,1⏟    
n−2

), r(vt,2|Π) = (1,0, 1,1, … ,1⏟    
n−3

, 2), 

r(v2,2|Π) = (1,2,0, 1,1, … ,1⏟    
n−3

), r(vt,3|Π) = (1,1,0, 1,1, … ,1⏟    
n−4

, 2), 

r(v2,3|Π) = (1,2,1,0, 1,1, … ,1⏟    
n−4

), r(vt,4|Π) = (1,1,1,0, 1,1, … ,1⏟    
n−5

, 2), 

r(v2,4|Π) = (1,2,1,1,0, 1,1, … ,1⏟    
n−5

), r(vt,j|Π) = (1,1, … ,1⏟    
j−1

, 0, 1,1, … ,1⏟    
n−j−1

, 2), 

r(v2,j|Π) = (1,2, 1,1, … ,1⏟    
j−2

, 0, 1,1, … ,1⏟    
n−j−1

), r(vt,n−1|Π) = (1,1, … ,1⏟    
n−2

, 0,2), 

𝑟(𝑣2,𝑛−1|Π) = (1,2, 1,1, … ,1⏟    
𝑛−2

).  

 

With the partition classes defined as shown in Table 2, the set 𝛱 provides a unique 

representation for each vertex, thereby satisfying the condition for a resolving partition. 

Consequently, the partition dimension of the graph satisfies 𝑝𝑑(𝐺) ≤ 𝑛 for 2 ≤ 𝑡 ≤ 𝐶𝑛−1
𝑛 . 

It follows that the partition dimension of 𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡 is precisely 𝑝𝑑(𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡) =

𝑛, confirming the validity of the selected resolving partition and ensuring the distinct 

identification of all vertices within the graph structure. 

∎ 

CONCLUSION 

This paper has examined the metric and partition dimensions of the graph 

𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡. The findings indicate that 𝑑𝑖𝑚(𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡) = (𝑛 − 2)𝑡 and 

𝑝𝑑(𝐴𝑚𝑎𝑙(𝐺𝑖, 𝑣0)𝑡) = 𝑛 for 2 ≤ 𝑡 ≤ 𝐶𝑛−1
𝑛 . These results contribute to the broader 

understanding of vertex identification in graph structures, with potential applications in 

network optimization and fault-tolerant systems. Future research could extend this analysis 

to other graph families or explore different amalgamation models to further investigate their 

impact on graph dimensions. 
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